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PREFACE:
WHAT THIS BOOK IS ABOUT

This text is short because it has a singular objective:
to teach you what a microcomputer is and how
you (or your staff) can design with it. We've put a
bibliography in the back if you want to know more
about how and why microcomputers are revolu-
tionizing electronics, what new applications have
opened up, how to compare microcomputers, etc.

The approach of the book is very simple. A real-
life design problem (currently in volume produc-
tion) is posed and solved with a real-life micro-
processor, the Signetics 2650.

To help you learn from the text, we’ve incorporated
several features: key words are identified in both
the text and separate glossary. There are two quizzes
and, finally, the text is extensively illustrated.

The book can be read in about four hours — an
easy investment for learning about what many say
is the most important technological innovation of
this decade.



I INTRODUCTION

With the introduction of a class of electronic com-
ponents called microprocessors, the hardware im-
plementation of physical systems, governing a wide
range of applications has undergone a radical change.
The objective of this book is to assist electronic
system engineers, managers and other creative indi-
viduals to reorient their system implementation
methodology to take advantage of the exciting
possibilities offered by this novel component. This
process of reorientation is accomplished by taking
the reader through the main steps of a specific elec-
tronic design problem; namely, the design of an in-
telligent typewriter system (ITS), using a micro-
computer. This particular design-example was se-
lected because: (1) the system hardware configura-
tion is usable in a number of other applications
with similar serial input/output requirements, and
(2) the hardware components, mounted on a PC
card, are available for evaulation and demonstration.

Before we begin, note that we are using two words,
microprocessor and microcomputer.

The microprocessor is a device

MICROPRDCESSOR] which performs arithmetic,

control, and logical operations.

The microcomputer, in turn, is

a collection of devices that in-

cludes a microprocessor, mem-
FMICROCOMPUTER ] ory, and associated interface

circuits to communicate with
the “outside world.”” This es-
sential distinction will become
clearer as we progress.

1.1  System Development Procedure

Using the microprocessor as a key system compo-
nent, the system designer can significantly reduce
the hardware component count and, therefore,
production costs. But during the prototype develop-
ment phase, he needs to carefully design the micro-
computer software, and the hardware interface be-
tween the microcomputer and the “outside world.”’

The fundamental trade-off that must be foremost
in the mind of the designer is: How can I/ configure
the system so as to minimize the component count
and hardware complexity by performing more
functions within the microcomputer, without any
significant degradation in overall system perfor-
mance (or response)?

The sequence of procedural steps to be followed in
the development of a hardware prototype system
are familiar to most electronic system designers
and managers. For the sake of completeness, this
familiar sequence is presented in Figure 1.1 for a
microcomputer-based prototype system. The first
block requires the designer or the manager to write
a detailed description of the functions the system
is to perform; Section 1.2 will document the func-
tional specification for the aforementioned ITS.

On the basis of this specification, a suitable system
hardware configuration must be defined to (1) meet
the interface requirements between the microcom-
puter and the “‘outside world’’ and (2) provide ade-
quate capability within the microcomputer to meet
the functional specification. In general, for a par-
ticular microprocessor, some ingenuity is required
to accomplish these requirements economically.
(These new components, therefore, do not super-
cede the need for clever engineers.) The definition
of a suitable microcomputer hardware configura-
tion for the ITS System is elaborated in Chapter I 11.

The next step is to design the
microcomputer program. By
program is meant the ‘‘cus-
tomized"’ sequencing of logi-
cal, arithmetic and control
operations of the micropro-
cessor to meet the desired
functional specification. The
system designer begins by
breaking down the functions
required into a set of elemen-
tary procedural steps arranged
in a systematic and clearly de-
fined manner by a'suitable pro-
gram description; additional
details concerning this facet of
system design are described in
Appendix B.

[ PROGRAM

The microcomputer program designed in the pre-
vious step is then implemented and tested in the
two following blocks of Figure 1.1. The ease with
which the program is implemented and tested,
largely depends on the usage of proper structuring
techniques during the program design process in
the previous step. Programming methodologies that
result in “‘well-structured’’ programs are presented
in Appendix B. Then, a microcomputer-based hard-
ware prototype system is implemented, incorporat-
ing the previously tested microcomputer program.



Successful testing of this prototype system com-
pletes the prototype development.

This book is organized as follows: In the following
section, the intelligent typewriter system (ITS)’s
design problem is specified. Since the design in-
volves usage of a microcomputer, basic computer
concepts are reviewed in chapter |l, this material
can be skipped by the computer specialists. Chapter
111 describes the design of the ITS, using the
Signetics 2650 microprocessor. Additional micro-
computer concepts and features, not required by
the ITS but useful in other applications, are also
described in chapter Ill. Figure 1.1 relates the dis-
cussions in the various sections to the typical
development process.

The main text is followed by a selected biblio-
graphy of microcomputer literature and a glossary
of commonly occurring terms. Appendix A pre-
sents the Signetics 2650 Microprocessor instruc-
tion set and electrical specifications. Appendix B
describes alternative methodologies for micro-
computer programming. Appendix C presents the
ITS program listing.

WRITE

SYSTEM SPECIFICATION ——-—SECTION 1.2

DEFINE MICROCOMPUTER —~BASED

SYSTEM HARDWARE CONFIGURATION |~~~ SECTION 3.3-35

DESIGN MICROCOMPUTER PROGRAM |———SECTION 3.4, APPENDIX B

IMPLEMENT MICROCOMPUTER

PROGRAM —— — SECTION 3.4, APPENDIX C

TEST MICROCOMPUTER PROGRAM  [——— APPENDIX B, BIBLIOGRAPHY

IMPLEMENT MICROCOMPUTER —BASED

SYSTEM PROTOTYPE — ——SECTION 3.5, BIBLIOGRAPHY

TEST MICROCOMPUTER —BASED

SYSTEM PROTOTYPE ——— BIBLIOGRAPHY

Figure 1.1 Prototype Development Procedure

1.2 The Design Problem: An Intelligent
Typewriter System (ITS)

The overall design problem is to implement an in-
telligent typewriter system (i.e., text generating
system) which outputs a “previously specified’
text, with certain blank spaces that can be filled
in by the user, to “‘customize’’ the text (e.g., a
form letter with the name, age, and social security
number of the individual to whom it is to be sent).
The input medium for the ‘‘previously specified”’
text is to be the familiar typewriter keyboard.
The output medium is to be the typewriter print-
ing mechanism. Moreover, control characters need
to be implemented into the system to allow inser-
tion of unique characters at locations identified
during text generation. Additional control charac-
ters will be required to provide an edit (i.e., erasure
of the previous character entered) and system reset
capability.

The above functional specification of the intelli-
gent typewriter system (ITS) expressed in com-
monly used English language is reworded in more
precise technical terminology in chapter Ill. In
this section certain hardware constraints are im-
posed and the functional usage of the various
control characters is defined. Then, in chapter 11|
(after a review of microcomputer fundamentals
in chapter 1), the hardware and software configu-
ration details, as outlined in Figure 1.1 are gener-
ated. A listing of the software portion of the ITS
is included in Appendix C.

For the typewriter mechanism, we will employ a
teletype (TTY) terminal. We will use this device
for two reasons. First, a microcomputer must
always employ an input/output (1/O) device or
devices. The TTY can perform all the 1/O functions
for our application. Second, as a microcomputer
system designer, you .will ultimately have to
employ a TTY or similar terminal in developing
the microcomputer system itself. An understand-
ing of the ITS/Teletype interface gives you a head-
start in understanding these terminals and their
operation.

Operation of the TTY is very similar to operation
of a typewriter with the exception that the TTY
has some additional keys. Figure 1.2 shows the
TTY keyboard. The keyboard includes the familiar
alphanumeric keys found on a conventional
typewriter. In addition to these, there are several
control keys. These are described in terms of
operation of the ITS as follows:



#6
CONTROL +E
PRESS SIMULTANEOUSLY
TO ERASE

@@0@00@@29/
DOAOODODG®
00RO O ®
PO DO O

#1
LINE FEED

#2
RETURN

/ SPACE

#4 CONTROL +B
PRESS SIMULTANEOUSLY
TO INSERT CHARACTER

#5 CONTROL +P
PRESS SIMULTANEOUSLY
TO PRINT

#3
RUBOUT

Figure 1.2 TTY Keyboard With ITS Commands

1. The LINE FEED key advances the paper, on

cy aul

which the TTY is printing, by one line.

2. The TTY printing mechanism moves from left
to right while printing. The RETURN key moves
the printing mechanism to the left hand margin.

3. Recall that the user will be typing into the micro-
computer memory. (This will include letters,

4.

numerals, line feeds, and returns.) The RUBOUT
key will be used to delete from memory the last
typed character or control key. Additional pre-
ceding characters can be deleted by continuing
to press the RUBOUT key. RUBOUT will affect
the editing function of the ITS.

The IDS feature for producing form letters will
be acheived using the following set of controls.



When the user reaches a point in the letter where
unique information is to be inserted, he will
simultaneously depress the CTRL key and char-
acter B. (We will refer to this combination as
CONTROL + B.) This will cause the material
written back from memory to stop so that the
unique information may be typed in by the user.
After the user has typed in the unique informa-
tion, he can resume the typing from memory
by depressing CONTROL + C.

.We will provide the user with a command
CONTROL + P which will initiate printout
from microcomputer memory.

. Finally, the entire storage of the ITS can be
erased by depressing CONTROL + E.

The TTY terminal has a bell which can be operated

on command from the microcomputer. We will
ring the bell when the user:

1.

Attempts to store more data characters than
the ITS storage will permit. Let us limit this to
250 characters.

. Tries to read an empty memory.

. Attempts to delete more characters than exist

in storage.

. Attempts to continue printing after the contents

of memory have been printed out.

The ITS system is now specified. Before describ-
ing the actual microcomputer design, we must first
review some computer concepts. This is the subject
of the next chapter. 7



Il.  MICROCOMPUTER BASICS

2.1 Introduction

This chapter develops the fundamental concepts
one needs to understand and use microcomputers.
The basic approach of the chapter is to develop
the structure (i.e., architecture) and operation of a
practical microprocessor. We begin by describing a
very simple device, a hand calculator, that adds
binary numbers. In the next section, the device is
redesigned to operate automatically—becoming,
in fact, a very primitive microcomputer. In sub-
sequent sections, additional refinements are added
until the complete microcomputer system is
defined.

2.2 A Binary Hand Calculator

Everyone has operated a (decimal) hand calculator.
Numbers are entered on a keyboard, operations
are performed (+, +~, =, etc.), and results are dis-
played. As it turns out, the operations one goes
through in operating a.hand calculator match very
closely with what happens in a microcomputer.
To show this correspondence, let’s first design a
very simple hand calculator, one that works with
binary numbers. In fact, let’s restrict operation of
the device to the following: we can enter two
numbers (in binary) and output the sum, i.e., out
calculator will be a binary parallel adder. (We can,
of course, do this with one chip, but our purpose
here is to ultimately evolve to a microcomputer.)

In a real calculator design, one must first ask, how
many digits should be used? The selection comes
~ by trading off desired precision with circuit com-
& plexity (i.e., the more digits, the more complex
the calculator).

We will use 8 binary digits (bits)
since we will be ultimately
BIT ] describing an 8-bit microcom-

puter. Hence each number we
wish to add will be represented
by 8 bits as will their sum.

We will refer to this group
of 8 bits as a byte. The follow-
ing examples show decimal
addition aiong with the corres-
ponding addition in binary.

L BYTE

Table 3.1 Addition Example

Decimal Binary Equivalent
1 00001011
+6 +00000110
17 00010001
130 10000010
+ 15 +00001111
145 10010001

Note that we use 8 bits or one byte to represent
each number in binary.

We can now move on to describing the design of
the binary calculator. In doing so, it is necessary to
introduce the reader to a logic device which will
be the heart not only of the ¢alculator at hand, but

ey oof +the micracomn iter
aiso ot the microcomputer.

This device is called an arith-
metic-logic uhit (ALU) and is
shown in Figure 2.1. As the
figure suggests, the ALU takes
ALU ] inputs A and B and performs

functions (add, subtract, com-
pare, etc.) based on a function
select input and outputs a re-
sult. (We will be discussing the
status output later.)

HEART OF THE COMPUTER
RESULTS STATUS
(A+B, A-B, A®B) (A=B, A<B, A>B)
FUNCTION ALU
SELECT ® ADD, SUBTRACT, COMPARE,
(INSTRUCTIONS) LOGICAL OPER

o

>

Figure 2.1 Arithmetic Logic Unit (ALU)



For our binary calculator, we will be concerned
only with the addition feature of the ALU. Inputs
A and B will represent the two one-byte numbers
to be added and the result (A + B) will also be one
byte (i.e., the inputs A + B and the output in the
figure actually consists of eight parallel lines.) We
will assume that the function select in the figure
has whatever is required to effect the add function
of the ALU.

Finally, since the ALU will
[ OPERANDS j be performing an (add) opera-

— tion on A and B, we will call
A and B operands.

We could, at this point, complete the design of
the binary calculator using 16 switches (8 Single
Pole-Double Throw switches connected to O and
5 volts for each input byte) and 8 lamps driven
from the buffered ALU output. However, we
ultimately intend to convert this calculator into
a microcomputer. For this reason, we will compli-
cate the calculator design by supplementing the
ALU with an 8-bit register Rg as shown in Figure
2.2,

What results is called a central
CPU processing unit (CPU) and
functions as follows:

Looking outside the CPU, a
[ INPUT l byte can be an input (i.e., fed
into) the CPU or

output (i.e., driven out) de-
L OUTPUT J pending upon an operation
- - select which can have one of
several states.

That is, input and output share the same set of lines,
since the data flows in both directions—in and out.
Looking inside the CPU, we see Rg connected to
both the input/output as well as the ALU. These
lines are one byte wide.

It should be noted that the
interconnections as shown are
not actual electrical connec-

among Rg, the ALU, and the
INPUT/OUTPUT (1/0) ter-
minal of the CPU. We will
shortly discuss these signal
paths.

Inputs to the ALU are the operand inputs (e.g., A
and B in Figure 2.1) to the ALU itself is not shown
for it is driven by logic whose input is the operation

tions but rather a composite:
f /0 of all possible signal paths

CpPU Ro
INPUT/OUTPUT a —=
(1/0)

ALU

MULTI-BIT
OPERATION
SELECT
(0/8)

Figure 2.2 Central Processing Unit (CPU)

- |

4



select input to the CPU. As indicated above, the
CPU interconnections shown in Figure 2.2 repre-
sents a composite of signal paths. The actual paths
themselves are governed by the state of the opera-
tion select input. These individual paths can be
visualized by considering the operation of the CPU.
For our calculator application, the CPU has three
operating modes:

MODE 1: A byte can be input directly into Rg.
That is, the 8 bits in Rg will be set to
whatever 8 bits are on the input. (a).
In this mode paths to and from the
ALU (b, ¢, and d) are inactive. (Logic
gates enabled and disabled by the sig-
nals on the OPERATION SELECT in-
put perform this function.)

MODE 2: The ALU will take the byte on the
input a/b and the byte in Rg (c) and
sequentially perform the binary sum
placing the result in Rg (through path
d). In this case, the path between input
and Rg is inactive. Note also that the
prior contents of Rg are destroyed.

MODE 3: The contents of Rg are fed to the out-
put (a). Here, all ALU paths are inactive.
Also, the contents of Rg are unaltered.

It is now a simple matter to construct a binary cal-
culator. Figure 2.3 shows a possible implementa-
tion using switch banks and lamps. Referring to the
figure, we will be sequentially putting the numbers
to be added into the operand switch bank. The

OPERAND
SWITCH
BANK
“ QIR [Q]Q QO =
ov — 6 6 5 —'ﬂ
L i
|
h]
|
1/0
CONTROL
INSTRUCTION
SWITCH l
BANK
5V
~ 191819189989

OUTPUT BUFFERS
& LAMP DISPLAY
\ N LI v N I o~ /
ool olald s fec.
Ro
ALU
X
|
i
| '
! i
! |
! |
! ]
! I
! i
J I
//// g
// |
o i
R 1
CPU
+5Vv

Figure 2.3 Binary Calculator



resultant output (A + B) will be displayed on the
output lamp display. (Note again that input and
output paths are shown as a composite; the actual
path employed will be controlled by additional
logic not shown.) We can select I/O paths and se-
lect the CPU operating mode using an 8 bit* (i.e.,
one byte long) instruction switch bank.

Here we use the word instruc-
tion in the sense that the set-
ting of the eight switches will
“instruct’”’ the CPU and other
logic what to do.

{ INSTRUCTION

Since we will be sequentially
setting switches and operating
the CPU, it will be necessary
( CLOCK l to provide the system with
clock pulses as shown. The
binary calculator is now de-

We can turn now to operation of the system. Let’s
suppose that we want the binary sum of operands
A and B (i.e., we want A + B). To be orderly, let’s
put both the operands A and B and the result
(when we get it) on a scratch pad as in Figure 2.4a.

We will refer to A,B,and A+B

f DATA as data, i.e., binary numbers
that are the object of the cal-
culation.

To be orderly, let’s itemize the data using numbers
101, 102, 103 as shown. In similar fashion, we can
list the instructions that have to be performed on
another piece of paper as shown in Figure 2.4b.
Each instruction as shown is in a shorthand nota-
tion and represents one or more unique 8-bit bytes
which will be placed in the instruction switch bank
and clocked into the system. These binary instruc-
tions will be discussed in a later section; the short-
hand designation will be discussed shortly. Note

signed.
DATA (ON A SCRATCHPAD)
ITEM NO. DATA
101 A
102 B
103 A+B
Figure 2.4a

INSTRUCTIONS

ITEM NO. INSTRUCTION
(SHORTHAND)
000 LOAD RO, 101
001 ADD RO, 102
002 STORE RO, 103
Figure 2.4b

Figure 2.4 Data and Instructions

*At this point, the use of an 8 bit “instruction’ was somewhat arbitrary. To perform the add operation, fewer bits are actually
required. However, as we will see later, there is a relationship between the length of the data word A, B, etc. and the instruction

in a real microcomputer.



that like the data, the instructions are itemized
with decimal numbers 000, 001, 002. Note also
that data and instructions have different item
numbers.

The calculator can now be operated by writing
data A and B next to item numbers 101 and 102
and executing the instructions sequentially starting
with item 000 as follows:

1. Instruction Item 000: Put the data in data item

101 in the operand switch bank and place (i.e.,
load) it into register Rg. A now resides in Rg.

2. Instruction Item 001: Put the data in data item
102 into the operand switch bank. Add this
value to the contents of Rg (A) and place the
result in Rg. A + B now resides in Rg.

3. Instruction Item 002: Output the contents of
Rp (A + B) to the lamp display and place (i.e.,
store) the value at data item 103.

Again, note that in actuality each instruction con-
sists of one or more eight-bit bytes set into the in-
struction switch bank. (As mentioned, these will
be discussed in greater detail later on.) For the
time bing, we will refer to these instructions by
the English equivalents shown in Figure 2.4b.

L LOAD LOAD: puts CPU input into
- == Ry,

ADD: adds CPU input to
{ ADD contents of Rg and places

the result into Rg.

STORE: places the contents
L STORE of Rg on the data scratch

pad.

Let’s move on now to automating the calculator
and in the process, develop a basic minicomputer.

2.3 An Automatic Calculator

In this section, we will modify the calculator of
Figure 2.3 such that it will operate automatically.
In doing so, it is clear that we must mechanize the
process of getting both the data and instruction
lists of Figure 2.4 in and out of the hardware. The
key to this is a new hardware element: Memory.

For our purposes, we will
describe memory as a device
which contains 8-bit bytes.
In particular, these 8-bit bytes
comprise the data and instruc-
tion bytes of Figure 2.4.

MEMORY

DATA MEMORY
READ/WRITE
COMMAND —™ CONTENTS
(8 BITS)
[ —>
CAN BE
ADDRESS READ
(15 BITS) OR
STORED
Figure 2.5a Hardware: Random Access Memory (RAM)

|
I
|
|
l
I
l
I
|
|

ADDRESS
(15 BITS) CONTENTS (8 BITS)
— —
(CAN BE
READ ONLY)

INSTRUCTION MEMORY

Figure 2.5b Hardware: Read Only Memory (ROM)

Figure 2.5 Memory



We will refer to these bytes

as memory contents. Since

these bytes are stored in hard-

ware, the question naturally
L CONTENTS J arises—how does the remaining
hardware know which byte is
which? and where in memory
they are located.

] This question is resolved by

L ADDRESS giving each byte an address.

The address here corresponds exactly with the data
item and instruction item numbers shown in the
lists in Figure 2.4 (e.g., 101, 102, 001, 002, etc.).
For the microcomputer system we are developing,
we will usea 15-bit address. (That is, in our system,
we could use a memory having as many as 32,768
unique contents.)

Finally, just as we had a data list and instruction
list in Figure 2.4, we will employ a data memory
and instruction memory. These are depicted con-
ceptually in Figure 2.5.

For the data memory, we can
either output (i.e., read) the
contents of each binary address
or input (i.e., store) a byte
which will become contents at
that address.

L DATA MEMORY l

We can read or store depending upon whether the
read/write command (Figure 2.5a) is high or low.
It should be noted here that when data are read,
the contents are undisturbed; however, when data
are stored, the original contents are lost. Figure
2.5b shows the instruction memory.

Instruction memory will only

be read. (Recall in the lists of

INSTRUCTION Figure 2.4 that we read A and

MEMORY B off the data list and stored

the sum A + B; we only read
the instruction list.)

At this point, let’s now interface the data and in-
struction memories with the calculator hardware
of Figure 2.3. We will be able to read data memory
contents directly into Rg. Hence, we can eliminate
the operand switch bank. In a similar fashion, let’s
replace the instruction switch bank with an 8-bit
register into which we can place the contents of
the instruction memory.

10

We will call this register an
instruction register (IR). It
will serve the same purpose in
the automatic calculator that
the instruction switch bank
served in the hand calculator.

INSTRUCTION
REGISTER

At this point, we now have data memory contents
feeding Rg and the instruction memory contents
feeding an instruction register. We must finally
"“address” data memory and instruction memory
in order to determine which data goes into Rg and
which instructions go into IR.

We will add two new registers
for this purpose: an operand

OPERAND |
ADDRESS address register (OAR) for
REGISTER addressing data (or operand)
memory
and an instruction address
register (IAR) for addressing
|N§L%%CEQSON instruction memory. These
REGISTER registers will have 15 bits to
match the number of address

bits.

Memory and foregoing registers are shown inter-
connected in Figure 2.6. Note first that the output
lamps have been removed since we can now store
Ro directly into data memory. Studying the figure,
we see that the automatic calculator has three
basic blocks: (1) CPU, (2) Memory, and (3) Control.

It should be noted here that
LMICRDPROCESSOR CPU and Control Sections
comprise a microprocessor.

A microcomputer on the other
hand consists of a micropro-
cessor, memory, and 1/0. The
CPU is unchanged from pre-
vious examples.

UICROCOMPUTER

The memory block depicts both instruction memory
contents (upper half of memory block) and data
memory contents (lower half). Associated with each
content is a unique address. Note that addresses
and contents correspond exactly with the data and
instruction lists we made for the hand calculator
(Figure 2.4).

Addresses are selected by acti-
vating an address line or ad-
dres bus which as noted earlier
is 15 bits wide.




'—"__ CPU
ADDfESS CONiENT " |
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¢-003 HALT —e |
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{1 9005 ——*ml
o <
Q — ;l
$-100 ——e l lr "'l
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Figure 2.6 Automatic Calculator

Memory contents can be individually placed on an
8-bit bidirectional data line

or data bus; in the case of the
data memory, data can be both
placed onto and from the data
bus.

{ DATA BUS

Note that the data bus as shown is a composite.
Only one content will be on the data bus at a time.

The control unit contains the 8-bit instruction reg-
ister (IR) and the 15-bit instruction address register
(IAR) and 15-bit operand address register (OAR).
Since the instructions are in numerical order, the
instruction address register is incremented by one
after each addressing of instruction memory. For
this reason, the 1AR is sometimes called a program
counter. The final item in the control block is the
instruction decoder. The decoder uses the contents
of the IR as input to control other parts of the

1"




system (CPU operation select, memory read/write,
signal path select, etc.). Note in the figure that both
the IAR and OAR are on the address bus. In actu-
ality, only one register at a time is on the bus. Fin-
ally, note the signal path between the IR and OAR.
This path is shown since in the actual microcom-
puter the contents of the OAR are governed by
the IR. We will discuss this point in more detail in
Section 2.10.

At this point, let us now discuss the operation of
the automatic calculator. Refer to Figure 2.6. We
will assume that the instructions are in instruction
memory as shown. A and B are in data memory.
The system will compute A + B and store the result
in data memory as follows:

1. The instruction address register will be initially
set to a value corresponding to memory location
000. This will cause contents of location 000
(Load Rp, 101) to be placed on the data bus and
into the instruction register. The instruction it-
self specifies the loading of Rg with data stored
at address 101; hence, the operand address reg-
ister will take on a value corresponding to ad-
dress 101. (This is accomplished by transferring
a portion of the instruction—namely, “101"" to
the OAR. This is accomplished automatically
when the Instruction Decode circuitry decodes
the instruction.) The instruction decoder will
then cause the system to place the contents of
OAR on the Address Bus which, in turn, puts A
on the data bus and finally into Rg. The instruc-
tion address register will automatically increase
by one to 001. A is now in Rg.

2. With the instruction address register at value 001,
the instruction ADD Rg, 102 will be put on the
data bus and placed into the instruction register.
The operand address register will take on value
102 causing B to appear on the data bus where
it will be input to the (lower) ALU input. The
ALU will add what is in Rg and B and return the
result to Rg. This again is caused by signals from
the instruction decoder which is looking at the
ADD instruction. The instruction address reg-
ister will again increment by one to address 102,
The sum A + B is now in Rg.

3. The instruction address register will put instruc-
tion STORE Rg, 103 on the data bus and into
the instruction register. The operand address
register will take on value 103 and the data in
Ro (A + B) will be stored in data memory loca-
tion 103.
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Note the addition of a HALT
] instruction at memory address
003.

L HALT

HALT stops excution of instructions. (Without a
HALT, the instruction register would be loaded with
unknown contents that could cause the system to
behave unpredictably, e.g., storing something other
than A + B at data address 103.) The system will
accordingly have behaved as an automatic calcu-
lator. The system is, in fact, a microcomputer. One
element is lacking, however: communication with
the outside world. This aspect is covered by an ex-
ample in the following section.

2.4 A More Practical Example: Mixing Vat

Let us, at this point, leave the calculator problem
behind and look at a somewhat more practical
problem.

Figure 2.7 depicts a mixing vat having two pipes
placing material into the top of the vat and two
pipes extracting material from the bottom of the
vat. We will monitor flow rates in all pipes (A and
B at the top, C and D at the bottom as shown). We
will use the microcomputer system to calculate
total flowrate into the vat (A + B) and total flow-
rate out (C + D). If, at any time, flowrate into the
vat exceeds flowrate out [i.e., (A + B) > (C + D)]
we will cause a bell to ring.

Looking at the above requirements, the microcom-
puter system must have instructions that will read
in the flowrates, perform the appropriate sums, and
make a comparison. A convenient technique for
obtaining these instructions is to first diagram the
sequence of individual steps in a flowchart as shown
in Figure 2.8.

A+B > C+D-=RINGBELL

Figure 2.7 Mixing Vat Example



READ READ A
& STORE A STORE A
READ & READ B
STORE B STORE B
READ & { READ C
STORED STORE C
|
READ & { READ D
STORE C STORE D
COMPUTE LOAD A
AND STORE ADD B
A+B STORE A+B
COMPUTE { LOADC
Cc+D ADD D
A+B < C+D COMPARE

{ COMPARE (SEE TEXT)
BRANCH (SEE TEXT)

WRITE BELL

not only select data and instruction memory con-

tents but to also select devices outside of the sys-
tem. For this reason, we must select *’I/O addresses’’
distinct from instruction and data addresses. The
1/0 addresses for the figure are tabulated as follows:

Table 2.2 1/O Addresses

1/O Address Item on Data Bus
017 Beli
200 A
201 B
202 C
203 D

Figure 2.8 Flowchart for Mixing Vat Example

Instructions can then be writ-
ten from the flowchart as
shown.

[ FLOWCHART

Our microcomputer system can perform this task
as shown in Figure 2.9. The CPU, Control, and
Memory Sections are the same. Two things, how-
ever, have changed:

1. The data bus and address bus go out to an input/
output (1/0) block containing the flowrate
meters and the bell.

2. We have more instructions than in the previous
example.

The 1/0 block comprises external logic (1/0 port)
connected to the four flowmeters and the bell. This
logic is designed to selectively place A, B, C, D, or
the bell on the data bus as a function of inputs
from the address bus. Note here that the address
bus is being used in conjunction with a control line
“C" (discussed in more detail in Section 2.10) to

Look now at the instructions. From the foregoing,
it should be apparent that all the READ instruc-
tions are accessing the flowmeter data and not
memory. The reader is already familiar with READ,
STORE, and LOAD instructions and should at
this point be able to trace through the microcom-
puter operation through instruction address 012,
(Try it!) After execution of instruction 012, we
have (A + B) at data memory address 105 and reg-
ister Rg contains (C + D).

These instructions at 013 (COMPARE Rg, 105)
and 014 (BRANCH 000) are new. Moreover, they
are interrelated (in a manner that will be explained
in Section 2.9). Basically, these instructions work
as follows.

The BRANCH 000 causes the
instruction address register to
be reset to 000 (i.e., BRANCH
XYZ resets the |IAR to XYZ).

[ﬁ BRANCH

Instructions beginning at 000 are then repeated.
The BRANCH instructions, however, is executed
as a result of what happens with the COMPARE
instruction as follows.

The COMPARE Rg, 105 in-
struction compares the magni-
[ COMPARE ] tude of the contents of Rg

(C + D) with the contents of
memory address 105 (A + B).

If the contents of Rg are greater than (i.e., flow out
is greater than flow in) the contents at 105 the
BRANCH instruction is executed. Otherwise, the
BRANCH instruction is ignored and the next in-
struction (WRITE) is executed. The WRITE BELL,
017 instruction is self-explanatory.
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5 |
000 [T READ Ro, 200 I ‘ Ro > _J
001 STORE R, 101 k,J ‘ ALU l

002 READ Rg, 201 m

003 STORE Rg, 102 l '

004 READ Rg, 202 | o

005 STORE R, 103 |__ (.,PU_]

006 READ Rg, 203

007 STORE Rp, 104 [ - —]

008 LOAD R, 101 | DECODER &— CLK |

009 ADD Rg, 102

010} [ sToRE Ro, 105 I

on LOAD Ro, 103 -—_—>l INSTR. REG

012 ADD Rp, 104 I

013] [comPARE Rg, 105

014 BRANCH l

015 WRITE BELL, 017

016 HALT I

017

IAR
H/\_JJ | ]

100 r/-\—‘

101 A | l

102 B l OAR

103 C

104 D

105 —— | |

| |
l_ CONT&)L_J
MEMORY
Figure 2.9 Mixing Vat Program Sequence

The reader should now see that the system of Fig- happen in microcomputer systems:
ure 2.8 will be continuously computing (A + B) and 1. The system can make decisions (compare then
(C + D) and comparing magnitudes until (A + B) BRANCH or don’t BRANCH).

> (C + D), at which point, the bell will ring.
2. The sequence of instructions can be changed

This example introduces two new things that can (e.g., due to BRANCH) and repeated.
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Moreover, the example begins to illustrate the most
important point in this book: EXCEPTING FOR
THE 1/0, THE MICROCOMPUTER HARDWARE
IS FIXED; THE ACTUAL SYSTEM DESIGN LIES
MAINLY IN DESIGNING THE SEQUENCE OF
INSTRUCTIONS.

This point becomes more obvious as we consider
some further instructions in the next section.

2.5 A More Powerful Microcomputer

As stated in the previous
section, design with micro-
computers will principally
comprise designing a sequence
of instructions or, to define a
new term, programming.

PROGRAMMING

Consequently, we can make our microcomputer
in Figure 2.9 a more powerful device by increasing
the number and diversity of instructions.

We can at this point very easily introduce several
new instructions. Recall that the microcomputer
CPU was developed using an arithmetic logic unit
ALU. So far, we have discussed use of the ALU
only for addition. Referring back to Figure 2.1,
it should be obvious that other operations can be
performed. For example, we can SUBTRACT
operands (A — B). Additionally, logical operations
can be performed.

r AND

Recall that operands A and B are 8-bit bytes by
"and-ing” corresponding bits giving an 8-bit byte
as aresult (A e B) as in the following example:

For example, we can AND
operands A and B.

Table 2.3 AND Operation Example

ALU Input ALU Output
A B AeB
10101100 11001010 10001000

Note also that the 8-bit operands need not be
binary numbers. In fact, the operands can repre-
sent data characters (e.g., as in the intelligent
typewriter system to be discussed later), codes,
logic states, etc.

We can, in similar fashion
to the above, develop other
logical instructions such as
“INCLUSIVE OR" and ““EX-
CLUSIVE OR"":

DNCLUSIVE OR

LEXCLUSIVE OR

—

Table 2.4 OR Function Example

FUNCTION ALU INPUT ALU OUTPUT
A B A+B
INCLUSIVE OR 10101100 |11001010 11101110
EXCLUSIVE OR (10101100 (11001010 01100110

These instructions are shown in Table 2.6 which
includes instructions discussed in previous sections.

Also included are ROTATE in-
ROTATE | Structions (ROTATE LEFT
> and ROTATE RiGHT).

These instructions move the bits in register Rg one
bit to the left or right as described in the table and
as indicated in the following.

Table 2.5 ROTATE Instruction Example

BEFORE ROTATE | AFTER ROTATE

ROTATE RIGHT
ROTATE LEFT

11010101
11010101

11101010
10101011

It should be clear that, as a group, the instruc-
tions shown in Table 2.6 make the basic micro-
computer hardware we've developed very flexible
in terms of what can be performed on the outside
world. By now, the reader has probably been
wondering. ‘“How fast are these instructions per-
formed?’’ As it turns out, time to execute each
instruction varies from instruction to instruction.
On the average, however, instructions are performed
in about 7 microseconds. In the previous examples,
it would, therefore, take about 21 microseconds
for the automatic calculator to sum and store re-
sults; each mixing vat computation would be done
in about 110 microseconds.

Instructions have been discussed so far by their
English equivalents (READ, ADD, STORE, etc.).
As we know, the instructions, themselves, are made
up of one or more bytes that are loaded into the
instruction register. We discuss this in the next
section.
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Table 2.6 Microcomputer Instruction List Example

ROTATE RIGHT

ROTATE LEFT

INSTRUCTION FUNCTION

LOAD Rg Loads Rg

STORE Places the contents of Rg into memory

ADD Adds to Rg what is on data bus and puts result in Rg

SUBTRACT Subtracts what is on data bus from Rg and puts result in Rg

AND ““Ands’’ what is on data bus with Rg and puts result in Rg

INCLUSIVE OR Performs “Inclusive OR’’ between data bus contents and Rg putting result in Rg
EXCLUSIVE OR Performs ““Exclusive OR’’ between data bus contents and Rg putting result in Rg
COMPARE Compares data memory content with Rg as prerequisite to branch

Shifts bits in Rg one bit to right. Least significant bit moves to most significant bit
position

Shifts bits in Rg one bit to left. Most significant bit moves to least significant bit
position

BRANCH Causes instructions to begin execution at another instruction address
WRITE Places contents of Rg onto data bus

READ Places contents of memory (or 1/0) into Rg

HALT Stops instruction execution

2.6 Binary Instructions

As we know, instructions are made up of one or
more 8-bit bytes fed into the instruction register.
While a detailed treatment of binary instructions is
beyond the scope of this book (the reader is refer-
red to more detailed literature such as the Signetics
2650 MICROPROCESSOR manual), we endeavor
in this section to at least give a general flavor of
how these instructions are actually structured.
(Actual instruction formats are in Appendix A.)

Instructions can be made up of one or more 8-bit
bytes which are put (one-at-a-time, of course) into
the instruction register. The first byte into the IR
basically tells the microcomputer (a) the operation
to perform and (b) the number of bytes in the in-
struction. The second byte in a two byte instruc-
tion generally consists of a data value to be operated
on.

Example

The instruction LOAD into register Rg binary num-
ber 10110010 would be written as a two byte
binary instruction.
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00000100<FIRST BYTE: Tells Microcomputer
a. What to do (LOAD)

b. Instruction has two bytes (number to be stored
is in second byte)

c. Where to load (Rg)

10110010<-SECOND BYTE:
Binary Number to be placed in Rg

There are also single byte instructions:

Example

We can ROTATE contents of register Rg one bit to
the right with binary instruction:

01010000<—SINGLE BYTE

a. Performs ROTATE operation

b. Indicates single byte instruction

A three byte instruction usually uses the second

and third bytes to derive a memory address. Since
an address has 15 bits, the third instruction byte



can be used for the least significant bits of the ad-
dress; the remaining bits of the address are taken
from 7 least significant bits in the second byte.

Example

The instruction STORE the contents of Rg into
data memory address 010010101110110 would be
written as a three byte binary instruction:
11001100 FIRST BYTE:

Instructs store operation and tells computer the
following two bytes are a data address.

00100101 SECOND BYTE:
Last 7 bits are upper part of address.

01110110 THIRD BYTE:
Lower part of address.

Note that the second and third bytes are passed to
the operand address register (see Figures 2.6 and
2.8).

These binary instructions are
MACHINE often called machine instruc-
INSTRUCTIONS | tions.
Example

Machine instructions for the binary calculator of
Figure 2.6 would appear as seen in Table 2.7.

Table 2.7 Example of Instructions

Machine Instructions English Instructions
(Figure 2.6)

00001100

00000000 LOAD Rpg, 101

01100101

10001100

00000000 ADD Rg, 102

01100110

01010000 ——— ROTATE RIGHT Rg

11001100

00000000 STORE Rg, 103

01100111

Now the bulk of our design activity with micro-
computers is going to be devoted to the writing of
instructions. It is rather obvious looking at Table

2.7 that even though the machine instructions are
what we finally want in instruction memory, it
would be an extremely tedious proposition to write
error free instructions.* Itwould be certainly easier
to somehow write the instructions in English as in
the right hand side of the table. We can, in fact,
write English-like instructions using the approach
discussed in the next section.

2.7 Assembler Instructions

Dafava Aianiiaginm hhaia: taia ~anm waivitn maavra Easliaks
DUIUIC UDLUDDSITTIY TTUVVY VWWE Lall wiile iuirce Cllgllbll

like instructions, it is first useful to define a few
terms. We have seen that we can write machine
instructions.

We will shortly demonstrate
that it is possible to write
L ASSEMBLER ] ‘these in English-like assembler

INSTRUCTIONS instructions which can then be
converted to binary instruc-
tions.

In microconverter jargon, we have two ‘‘languages’’
we can use: machine language and assembly
language.

[ PROGRAM The instructions themselves
will constitute a program.

What we will do is the fol-

ASSEMBLY lowing; we will ‘““write’’ our
LANGUAGE program in assembly language
and use another computer

MACHINE (not necessarily the microcom-
LANGUAGE puter) to convert the assembly

- language to machine language.
The computer that makes this

L ASSEMBLER conversion will do so using
another program called an

assembler.

This conversion process is depicted in Figure 2.10.

Here the assembly language
BOURCE PROGRAM | program is often referred to as
" asource program.

The machine instructions (or
[OBJECTPROGRAM code) are referred to as the
object program.

*The problem can be somewhat alleviated by using an abbreviated
notation like hexadecimal. The basic problem of generating error-
free code remains.
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ASSEMBLER ASSEMBLER MACHINE
INSTRUCTIONS —— (A COMPUTER — INSTRUCTIONS
(SOURCE CODE) PROGRAM) (OBJECT CODE)

Figure 2.10 Conversion of Assembler Instructions
to Machine Instructions

The assembler converts the source program into
binary object program which, in turn, can be
placed into the microcomputer instruction memory.

It is beyond the scope of this book to show in de-
tail how to write the basic instructions shown in
Table 2.1 in assembly language. (See instead the
Signetics 2650 Microprocessor Manual. Also, as-
sembly language instructions are summarized in
Appendix A.) We can, however, give the reader
insight into the general structure of assembly
language by showing the assembly language in-
structions corresponding to the machine language
instructions shown in Table 2.7. We do this in
Table 2.8 as follows:

Table 2.8 Assembly Language Instructions for
Binary Calculator

English Assembler Machine
Instructions Instructions®  Instructions
(Figure 2.6) (Source Code) (Object Code)

LOAD Rg, 101 LODZ 101 00001100

00000000

01100101

ADD Rg, 102 ADDZ 102 10001100

00000000

01100110

STORE Rp, 103 STRZ 103 11001100

00000000

01100111

The assembler converts theée into theS(

*In the actual application, memory addresses will be written in
hexadecimal.

Note in the table the similarity between the Eng-
lish instructions and the assembler instructions.
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To summarize this section, we have demonstrated
that the tedium and possibilities for error in
writing machine instructions can be eased by
writing instructions in assembly language and
converting these to binary. Since the bulk of the
effort in design with microcomputers comprises
programming, the assembler becomes a significant
cost/effective design tool.

2.8 Saving Instruction Memory —The Subroutine

From the previous discussion, we have seen that
our microcomputer can address 32,768 bytes. In
actual design, however, we will employ only as
much memory as is required (i.e., we will attempt
to minimize the number of memory chips).

As it turns out, it is almost
always possible to reduce the
size of instruction memory by
employing a programming
technique called the sub-
routine.

SUBROUTINE ]

This technique can be illustrated by referring to
Figure 2.11. Look at the first column in the figure.
This column represents a segment of instruction
memory with distinct binary instructions which we
have labeled A, B, C, D, E. Notice that the boxed
instruction sequence D, A, C, B, E appears 3 times,
i.e., we are using 15 memory locations to store the
same sequence of b.instructions.

We can reduce the total number of instructions by
using a branch command as seen in the second
column of the figure. Here, we write the repeated
sequence D, A, C, B, E beginning at instruction
address X. Each time that the repeated instruction
sequence must be executed, we BRANCH to ad-
dress X and perform the sequence.

The instruction following the
sequence is a return instruc-
tion which tells the system to
resume executing instructions
with the instruction following
the last executed BRANCH
instruction.

L RETURN

The sequence D, A, C, B, E
that starts at location X is
called a subroutine.

[ SUBROUTINE

Compare the first and second columns: we have
made the repeated sequence a subroutine and
eliminated six instruction memory locations. These



A A A ]
[ c C

E E E

D BRANCH X BRANCH X

A F F

c B B

B A BRANCH Y

E C D

F B E

B D BRANCH X

A E A

C BRANCH X BRANCH "X

B A B

D > BRANCH X > A

E B BRANCH Y

D A C

A A % %
c C

B B 7

E C %

A 777, %

D G, % %
A G %
c %
B X D

E I, BRANCH Y

B X D E

A A RETURN

A C Y A

c B c

B E B

C RETURN RETURN

Figure 2.11 Subroutines
saved locations are shaded in the figure. We can
make further economies by noting that in the
second column, the instruction sequence A, C, B is
also repeated. We can further reduce memory by
letting A, C, B be a subroutine at location Y "as
shown in the third column. Note again that the
RETURN instruction takes us back to the address
immediately following the last BRANCH instruc-
tion.

Notice in the third column that

we have located' a subroutine
] within a subroutine, a process
called subroutine nesting.

[ NESTING

Observe also that in the third column, we have re-
duced instruction memory to 75 percent of that
used in the first column.

We should point out here that the use of subrou-
tines in this manner is not merely a “frill’” but in
actuality a technique which can save instruction
memory in virtually every microcomputer appli-
cation.

Let's now turn to an important question: How do

we build this subroutine capability into the hard-
ware we've already developed? The key to this
question is the fact that everytime we BRANCH to
a subroutine location (X or Y in Figure 2.11) we
must somehow save the instruction address that
follows the BRANCH instruction (so that we can
return to normal operation later).

We will do this by incor-
RETURN ADDRESS | Pporating a register bank in the
STACK system called a return address

stack (RAS).

We can conceptualize the return address stack by
comparing it to a cafeteria tray holder where clean
trays are loaded and extracted from the top of the
tray holder. In terms of subroutine operation, we
will write the return address on a cafeteria tray and
put it on the stack of trays already there. When it
is time to RETURN, we will go to the tray holder
top and get the return address. If we are nesting
subroutines, we will successively place return ad-
dresses on trays and push them down on the stack
of trays. Each time a RETURN address is executed
we will pull the top tray and use its address for the
next instruction. It should be clear to the reader
that we can nest as many subroutines as we have
trays.

The hardware implementation of the return ad-
dress stack is shown in Figure 2.12. The stack it-
self consists of a register bank fed by the instruc-
tion address register.

The specific register employed
is governed by a counter called
a stack pointer which operates
(as a rotating counter) to ef-
fect the cafeteria tray analogy.

L STACK POINTER

The hardware of Figure 2.12 shows the mechanism
by which subroutines are implemented. We can em-
ploy this hardware without concern for its opera-
tion the instructions noted in the following table.

Table 2.9 Subroutine Instructions

Instruction Function

BRANCH to Causes the program to begin execution of
SUBROUTINE X |the subroutine beginning at instruction X.

RETURN Placed at the end of the subroutine, Causes
return of the program to the instruction ad-
dress immediately following the last
BRANCH to SUBROUTINE instruction.
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1/0

Ro > ALU

MEMORY

DECODER

CLK
&4— INTERRUPT

) —v i |
e
y
OAR IAR

RETURN STACK
ADDRESS POINTER
STACK

Figure 2.12 Implementation of Subroutine Hardware

The use of the subroutine instruction is illustrated
in the intelligent typewriter system design dis-
cussed in the next chapter.

In the following section, we complete our descrip-
tion of the microcomputer hardware by describing
a powerful adjunct to the system, program status.
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2.9 Program Status Word

PROGRAM
STATUS WORD

( WORD

As a final element in our
microcomputer system, we
will add a special purpose reg-
gister which we will call a
program status word (PSW).

(A word is a collection of
bits.)



0 — > CARRY
1 ——» UNUSED
2 ——> OVERFLOW

CONDITION
- CODE

Y

——» INTERRUPT INHIBIT

|

FLAG

7 ——» SENSE

Figure 2.13 Typical Program Status Word

The bits in the PSW can serve a variety of pur-
poses as will be discussed shortly. What is important
to first note is that:

1. We will be able to put PSW bits into Rg and
vice versa. Hence, computations can be made
based on what is in the program status word.

2. We will develop instructions that will permit us
to test and alter bits in the PSW.

A sample program status word is shown in Figure
2.13 and is 8 bits long (since it will be put in Rg).
The functions of each, bit are indicated in the
figure and described as follows:

Carry (C) Set by execution of any add
or subtract instruction re-
sulting in a carry or borrow

out of the high order bit

of the ALU.
Compare Control Used with COMPARE com-
(COM) mand: 0 = arithmetic com-

pare; 1 = logical compare.

Overflow (OVF)  Employed for signed arith-
metic operations; is set when a

result exceeds a range of

operands.
Condition Code Used to interlink COMPARE
(cc) and BRANCH instructions

(See Section 2.4).

Interrupt Inhibit  As shall be discussed in Chap-

(1) ter 111, we can use an external
signal to change (i.e., inter-
rupt) the mode of the micro-
computer operation. When the
interrupt inhibit is set, the sys-
tem will not respond to an
external interrupt signal.

Flag The flag bit is a latch driving
output to a pin on the micro-
processor chip. Use of the flag
is illustrated in the next chap-
ter.

Sense This bit is connected directly
to a pin on the microprocessor
chip.

Note that all bits in the PSW are not used in this
microprocessor.

As discussed earlier, we can transfer information
between register Rg and the PSW. This can be done
through the following instructions.

Table 2.10 Program Status Instructions

Instruction Function
LOAD PS Causes current contents of
PSW to be replaced with con-
tents of Rg.
STORE PS Causes contents of PSW to be
transferred into Rg.
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At this point, we have developed a basic micro-
processor system. This system is summarized in
the next section.

2.10 Summary— The Microprocessor

The microprocessor we have developed thus far is
shown in Figure 2.14 within the dashed lines. This
entire system (i.e., within the dashed lines) is
usually made on one chip.

The figure includes some additional components
not previously discussed. First of these are the
holding register and data bus register. These regis-
ters are used to hold data and addresses continued

in multi-byte instructions and are a means of trans-
ferring data and address from instruction memory
onto the data bus and into the OAR, respectively.
Second, observe that the figure includes blocks R1,
R2, and R3 connected to Rg and the ALU input.
These registers actually comprise two bands of three
registers each. They are used as supplements to
Ro (e.g., can be used as source or destination for
arithmetic operations, |/O transfer, etc.).

From what has been developed so far, it should be
clear that we will design with this microprocessor
by:

MICROPROCESSOR
I/o (ONE CHIP)

S ) A ;
! |
| |
I I

|
| Ro :
: ALV [
' - i
MEMORY : J |
| - |
| |
| |
: STATUS {
| PROGRAM |
I WORD I
| DECODER |~=— CLK |
| |
| 1 |
: ~— INTERRUPT |
| |
| DATA HOLDING INSTR |
: BUS REG REG REG }
: e | |
|

|
A i3 |
| ADDRESS STACK |
: ADDER OAR IAR RAS POINTER :

|
! |
‘ I
L e e e e e e =
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Figure 2.14 Basic Microprocessor Diagram



1. Designing the sequence of instructions, i.e., pro-
gramming, and

2. Designing the electrical interface between the
microprocessor and the memory and 1/0.

For the first requirement, we really need only
the conceptual picture of the unit shown in Figure
2.15 and the instructions. The dashed block in the

upper left of the figure contains the program
status, discussed earlier. The instructions we have
described in the text are summarized in Table 2.11.

The electrical interface design will be made on the
basis of the electrical pinouts for the microproces-
sor chip. This aspect is covered in more detail in
the next chapter.

MICROPROCESSOR

OVERFLOW

COND CODE

INTERRUPT

INHIBIT FLAG

COND CODE SENSE

STACK POINTER

RETURN

. ADDRESS

STACK

INSTRUCTION ADDRESS REGISTER

INSTRUCTION REGISTER

OPERAND ADDRESS REGISTER

Ro

R1

MEMORY

PROGRAM ROM/PROM

R))

RAM

R2

R3

Figure 2.15 A Programmer’s Conceptual Model
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Table 2.11 Microprocessor Instructions—Summary

Instruction

Function

LOAD

STORE

ADD
SUBTRACT
AND
INCLUSIVE OR

EXCLUSIVE OR

COMPARE
ROTATE RIGHT

ROTATE LEFT

BRANCH
WRITE
READ

BRANCH TO SUBROUTINE X

RETURN

LOAD PS
STORE PS
HALT

Loads Rg

Places the contents of Rg into memory

Adds to Rg what is on data bus and puts result in Rg
Subtracts what is on data bus from Rg and puts result in Rg
““Ands’’ what is on data bus with Rg and puts result in Rg

Performs “’Inclusive or’’ between data bus contents and Rg, putting result
in Rg

Performs ‘“Exclusive or’’ between data bus contents and Rg, putting result
in Rp

Compares data memory content with Rg as prerequisite to branch

Shifts bits in Rg one bit to right— least significant bit moves to most signi-
ficant bit position

Shifts bits in Rg one bit to left—most significantbit moves to least signifi-
cant bit position

Causes instructions to begin execution at another instruction address
Places contents of Rg onto data bus
Places contents of memory (or 1/0) into Rg

Causes the program to begin execution of the subroutine beginning at
instruction X

Placed at the end of the subroutine—causes return of the program to the
instruction address immediately following the last BRANCH TO SUB-
ROUTINE instruction

Causes current contents of PSW to be replaced with contents of Rg
Causes contents of PSW to be transferred into Rg
Stops instruction execution

24




QUIZ FOR CHAPTER Il — MICROCOMPUTER BASICS
(Answers on Following Page)

1. What is a byte?

. What is an ALU?

. What is a CPU?

. What is 1/0?

. What is an instruction?

. What is the function of the LOAD instruction?
. What are MEMORY CONTENTS?

. What isa MEMORY ADDRESS?

© 0O N O o~ W N

. What is AN INSTRUCTION REGISTER?

10. What is the distinction between an INSTRUCTION REGISTER (IR) and an INSTRUCTION ADDRESS
REGISTER (IAR)?

11. What is the function of the OPERAND ADDRESS REGISTER (OAR)?
12. What is the difference between a MICROPROCESSOR and a MICROCOMPUTER?
13. What is a bus?

14. What does a BRANCH XYZ command do?

15. What is meant by PROGRAMMING?

16. What two basic functions does the ALU perform?

17. What are MACHINE INSTRUCTIONS?

18. What are ASSEMBLER INSTRUCTIONS?

19. What is an ASSEMBLER?

20. What is a SUBROUTINE?

21. What is the main advantage of the subroutine?

22. What is SUBROUTINE NESTING?

23. What isa RETURN ADDRESS STACK (RAS)?

24. What is the PROGRAM STATUS WORK (PSW)?

25. What is DIRECT MEMORY ACCESS (DMA)?

26. What is an INTERRUPT?
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13.
14.

15.
16.
17.
18.
19.
20.

21.
22,
23.
24.
25.
26.

26

ANSWERS TO QUIZ ON CHAPTER Il

. A group of binary digits.

. Arithmetic Logic Unit.

. A Central Processing Unit, consisting of an ALU and holding registers.

. Input/Output.

. A group of bits which decoded direct operation of the CPU and other logic.

. Puts data in Rq.

. The stored bits.

. A group of unique bits that define a specific memory content.

. A register which contains instruction bytes.

. The IR contains an instruction byte; the |AR contains the address of an instruction byte.
. The OAR contains the address of data.

. A MICROPROCESSOR consists of CPU and associated control circuitry; a MICROCOMPUTER consists

of a microprocessor, memory, and /0.
Parallel lines over which multiple bits can be transmitted (e.g., 8-bit data bus; 15-bit address bus).

Sets the IAR to XYZ such that the instruction sequence continues beginning with the instruction at ad-
dress XYZ.

Designing the sequence of instructions.

Arithmetic operations and logical operations.

Binary instructions.

English-like statements which can be converted to machine instructions.

A computer program that converts ASSEMBLER INSTRUCTIONS into MACHINE INSTRUCTIONS.

A subroutine is a subprogram comprising a sequence of instructions that is usually executed more than
once during microcomputer operation.

To save instruction memory.

The placing of subroutines within subroutines.

A RAS is a register bank used to store return address during subroutine operation.

The PSW is a register containing bits corresponding to numerous microprocessor functions.

DMA is a microcomputer operating mode which permits direct interfacing between memory and 1/0.

A signal to the microprocessor to suspend the current computation and to execute a more urgently needed
computation.



I1l. DESIGN AND IMPLEMENTATION OF
THE INTELLIGENT TYPEWRITER
SYSTEM (ITS)

In the previous chapter, the basic features and ca-
pabilities of a typical microprocessor, namely the
Signetics 2650, were explained. Now, we can pro-
ceed with the design problem posed in Section 1.2
of Chapter I. The relationship between the steps in
the microcomputer system development process
and the material in this chapter was noted in Figure
1.1. We will begin by considering the interface
requirements for the teletype keyboard and typing
mechanism; this requirement must be met by both
the conventional design using standard circuitry
(i.e., LSI, MSI, SSI) as well as that using the micro-
processor as a system component. Then, we will
consider a system level block diagram of the con-
ventional design and make an estimate of the IC
packages required.

At this point, we will begin considering the incor-
poration of a microcomputer to implement the
system specification. The first step will be to select
a suitable microprocessor, based on the guidelines
that we shall develop. Then, we will describe perti-
nent features of the selected microprocessor,
namely, the Signetics 2650.

possible hard-
icroprocessor. This
will be followed by the software program design
and implementation details. Finally, we will con-
clude the chapter by reviewing additional features

useful in other classes of applications.
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3.1 System Overview

Based on the specification in Chapter II, we can
depict the system hardware block diagram, as in
Figure 3.1. Essentially, the system consists of a
teletype (to enter and type the text), control
circuitry (to implement the desired functions) and
memory (to store the text).

The Teletype (TTY) is a standard device which
encodes each of the keyboard character keys into a
unique bit pattern which is seven bits long, together
with a parity bit (see glossary) for error control.
Similarly, when the teletype receives characters en-
coded in this manner, the typewriter mechanism is
activated to print the appropriate symbol.

This standardized serial data

[ SERIAL 1/0 input/output  procedure is
graphically depicted in Figure
3.2.

Referring to Figure 3.1, we note that, when the
operator pushes a key, a unique serial bit pattern
is sent to the control circuitry.

The control circuitry must wait until the entire bit
pattern is received and then send it over the same
serial channel to the typewriter print mechanism so
that the user can visually verify that the correct
character was received by the control circuitry.

CONTROL
|t —————————
MEMORY 8 | CONTROL
(256 BYTES) |<«—<—{ CIRCUITRY
ADRS P
T .
DATA

DECODER AND j-=——
TYPING
MECHANISM

3 TTY
SERIAL |7 ——— 77—~

CHANNEL KEYBOARD
AND
ENCODER

Figure 3.1 ITS Block Diagram
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START 7-BIT CODE PARITY STOP
BIT BIT  BIT(S)

Figure 3.2 Teletype Serial Data 1/O Transfers

This process of retransmitting
L ECHO ] the received data is called
echoing.

For convenience, a summary of the ITS commands,
discussed in Chapter |, is tabulated in Table 3.1.
This command specification, together with the
teletype serial input/output process described
above, gives us adequate information concerning
the user and the teletype interface. Referring to
Figure 3.1, we note that whatever the hardware im-
plementation of the control circuitry, at least 256
bytes of memory will be required to store the text
and the corresponding commands, and then send
them back to the teletype print mechanism at the
request of the user.

The above description completes the discussion of
the common parts of the system implementation.
In the following sections, three possible hardware
implementations with the associated software de-
tails will be considered. The first implementation
uses conventional hardware circuitry and, thus, no
software is required. Then, after selecting a parti-
cular microprocessor, we will describe two micro-
processor-based implementations. The first of these
implementations, using the Signetics 2650 Micro-
processor as a system component, implements a
number of functions previously performed by
hardware by the microprocessor software program.
Then the latter implementation described takes
advantage of some of the unique capabilities of the
Signetics Microprocessor to significantly reduce the
hardware complexity.
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Table 3.1 ITS Command Summary

KEY FUNCTION

Rubout (delete) | Erase last character in memory
and echo the erased character.
Additional preceding charac-
ters can be erased by continu-
ing to depress the delete key.

Control and E | Erase entire memory.

Control and B | Used to indicate beginning of in-
serted message. Is not printed,
but stored in memory. Stops
print out when read from
memory. Required once for
each unique information entry
point.

Control and C | Continues print out of memory
after entry of unique infor-
mation.

Control and P | Prints out contents of text
memory.

Control and R | Software reset. Clears text
buffer and restarts program.

Note: Bell will ring if any of the following are true.

1. Entering more than 250 characters in memory.

2. Requesting print out of an empty buffer.

3. Attempting to delete more characters than there are in memory.




To keep this text at a reasonable length, we cannot
discuss these designs in minute detail; but the
material in this chapter, together with that in the
appendices, is sufficient to complete the design.
Additional material pertinent to this application,
including the hardware itself, is available from Sig-
netics Corporation. For the latter microprocessor-
based design, we will specifically consider the pro-
gramming aspects of the serial input/output
interface; this will give the reader a flavor for the
nature of the software programming task.

3.2 ITS Random Logic Implementation

Random logic is made up of:
LRANDOM LOGIC ] (1) SSI circuits such as inver-
ters, gates, and flip-flops,

(2) MSI circuits such as de-
coders, multiplexers, registers
and counters, and

(3) LSI circuits such as memo-

" UART J ries and universal asynchronous
transmitters and receivers
(UART).

The random logic implementation of the Intelligent
Typewriter System requires, first of all, a serial/
parallel converter. This is an LS integrated circuit
which converts from the serial transmission mode
(one bit of information at a time) of the teletype
to the parallel mode (several bits at a time) of the

memory and vice versa.

One possible serial/parallel converter that could be
used is the TR1602 asynchronous receiver trans-
mitter. The TR1602 has 40 pins of data lines, con-
trol lines, and power supply lines. Dual power sup-
plies of +5 and - 12 volts are required. Control lines
are for receiving and transmitting data, error indi-
cations, clock, reset, and data format control.

As noted in Section 3.1, for all implementations,
each memory word is required to be eight bits
wide. A suitable memory component is the Sig-
netics 2606 static RAM. Its organization is 256
words of 4 bits each. So two packages will provide
the necessary 256 bytes (8 bits wide) of storage
space for the text.

The largest and most complicated portion of the
ITS is the control. It can be designed from TTL,
SSl1, and MSI integrated circuits. Figure 3.3 shows

the hardware block diagram for thie ITS using a
conventional logic approach. Remember, each
block contains many integrated circuit packages.

First of all, it is necesary to control the TR1602
Asynchronous Receiver Transmitter. The 37 lines
of data and control are controlled by three func-
tional blocks: (1) Receive Data Control, (2) Trans-
mit Data Control, and (3) Miscellaneous Control,
each controlling its respective function.

A clock is required to drive the TR1602 and
possibly the rest of the system. The clock block
performs this function.

Memory Control controls the 2606 memory. Ad-
dressing the memory, data flow control, read or
write operation select, and chip enable are the
functions this block provides.

The Character Storage Control block controls
storage of characters received from the TTY into
memory. These are the characters that will make
up the printed page when the print command is
issued later.

Control-Character Storage Control controls storage
of control-characters received from the TTY into
memory. This type of character will not be printed
when printout is requested, however. Control
characters controi page format and provide Stop
control (insertion of special user information into
the letter after a stop). Control Characters are
stored in memory.

The Control-Character Control is a major func-
tional requirement of the ITS. It provides the
control functions of character delete, memory
erase, continue (after Stop), and printout.

Error control performs the error indication tasks
of memory overfill attempt, empty print attempt,
and erroneous delete attempt.

The coordinating control block is another major
functional block in the ITS. It performs the coor-
dination of all the functional blocks in the system.

In summary, the conventionally designed ITS con-
sists of a TTY, TR1602 serial/parallel interface, a
memory, and a large control section. The control
section must be large and complex to handle the
functions of the ITS. And it must be designed from
scratch out of a large array of SSI and MSI circuits
such as inverters, gates, flip-flops, multiplexors, de-
coders, counters, registers, etc. Seventy-five IC
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Figure 3.3 Block Diagram —Conventional Implementation for the Intelligent Typewriter System (ITS)

packages are required to implement this random
logic version of the ITS.

3.3 Selection of a Microprocessor

The process of microprocessor selection involves a
rather complex tradeoff between a number of key
factors that include (1) the overhead electronics
(e.g., input/output interface, clock, power supply),
(2) CPU capability (e.g., functional speed, instruc-
tion, set, software development tools) and (3)
availability (e.qg., delivery schedule, second sourcing,
cost/volume).

It is generally recognized that one particular micro-
processor is not suitable for all possible applications.
Thus, we will discuss this process of selection,
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placing particular attention to the application at
hand, namely, ITS. Moreover, during this selection
process, the designer should keep the overall system
specification uppermost in his mind. In other
words, the successive narrowing down of the list
of available microprocessors must be dictated by
performance assessment at a system level rather
than any individual feature. In the interest of
brevity, we will discuss the abovementioned factors
and then suggest one suitable microprocessor.

In Figure 3.1, we have identified the portion of the
overall system that is to be replaced by a micro-
processor. The first factor to be assessed is the
overhead electronics to incorporate the micropro-
cessor.




All microprocessors require a clock which may be
single or multiphase; from a timing generation
viewpoint, a single phase clock is more desirable.
Similarly, microprocessors that use a single power
supply level—that is, TTL compatible—are more
desirable. The two main types of data transfers in
and out of a microprocessor are serial and parallel.
The microprocessor hardware should be such as to
allow the implementation of a serial or a parallel
interface with little or no interface circuitry (e.g.,
latches, line drivers, multiplexers).

Having devised means of getting data into and out
of microprocessor, we are in a position to consider
the second factor, CPU capability. Since we are re-
placing hardware components by a software pro-
gram within the microprocessor, it is essential that
the instruction set of the microprocessor be suffi-
ciently “powerful’” to perform the job. The
““power’’ of the instruction set is reflected by the
available addressing modes for executing the data
transfer, control transfer, arithmetic and logic in-
structions. Ultimately, for a particular program,
this can be translated into usage of memory (RAM/
ROM) and the speed with which the important func-
tional blocks of the application can be implemented.

One important point to be kept in mind is that,
provided the microprocessor can execute the re-
quired function fast enough so that the overall sys-
tem meets the desired performance specifications,
then it is uneconomical to incorporate a faster but
more expensive microprocessor. Another facet of
CPU capability is the ease with which the neces-
sary software program can be developed. An essen-
tial software development tool is the assembler,
discussed in Chapter 1.

Other software tools include

L LOADER J means of (1) entering the pro-

: - -——J gram into the microcomputer
memory (i.e., loader),

(2) deleting or inserting in-
L EDITOR J structions into a program (i.e.,
editor), and

(3) duplicating the functioning
L SIMULATOR ] of the program from EDITOR

a software point of view (i.e.,
simulator).

Additional details regarding these development
tools can be obtained from manufacturer micro-
computer manuals (e.g., Signetics 2650 manual).

The third main factor in microprocessor selection
is availability. To assure himself of delivery sched-
ules, the system designer should ensure that there
are multiple sources for a selected microprocessor.
Moreover, the manufacturer must be capable of
delivering in reasonably high volume at a com-
petitive price.

As noted earlier, the selection of a microprocessor
is a long and time consuming process. In the re-
maining part of this section, we will describe the
Signetics 2650, which meets all of the above-
mentioned requirements handsomely. The pinouts
of the 2650 are functionally arranged in Figure
3.4; these are described in the following:

Power Supply The microprocessor operates on +5
VDC supply. In fact, all inputs/
outputs for the 2650 are TTL
compatible.

Clock A single phase clock (using normal
TTL voltage swing) is employed
which can run from DC to 1.25
MHz. (Note: the processor can be
single-stepped for debugging.)

Reset Starts processing from a known
state (location zero).

Flag Is output from a latch driven by
one of the program status word
(PSW) bits. Use is programmer’s
choice.

Sense Is input directly to another PSW
bit. Use is programmer’s choice.

Address 15 bit address bus for program,

data memory and 1/0.

Data 8 bit, bidirectional data bus for pro-
gram, data memory and /0.

M/iO Indicates whether operation is
memory (M) or 1/O. Used to gate
read or write signals between mem-
ory or 1/O devices. High state
corresponds to memory operation;
low state to 1/0.

R/W Determines direction of data bus in
reading or writing. High state cor-
responds to write operation; low
state read.

WRP Timing signal from the processor
that provides a positive going pulse
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Figure 3.4 2650 Interface Signals

in the middle of each requested
write operation (memory or 1/0)
and a high level during read opera-
tions. Designed for use with Sig-
netics 2606 R/W memory circuits
to provide a timed chip enable signal.

Coordinating signal for all opera-
tions.

Response to OP REQ from ex-
ternal device.

External interrupt.
Response to INTREQ from 2650.

Request to temporarily stop opera-
tion of the 2650.

RUN/WAIT
ADREN

DBUSEN

Indication of the operating or tem-
porarily stopped state of the 2650.

Removes 2650 Address lines from
the tri-state bus.

Remaves the 2650 Data lines from
the tri-state bus.

The above description of the pinouts is terse; for
more details the reader is referred to Appendix
A and the Signetics 2650 manuals.

Taking advantage of the available pins on the 2650,
the system designer minimizes the external hard-
ware circuitry to (1) interface the 2650 as simply
as possible and (2) perform as many functions in
software as possible. Thus, the task of the system
designer is now oriented toward software program




THE 2650 CPU

MEMORY

|

PROGRAM STATUS WORD
|
1

UPPER LOWER

| STACK POINTER

PROGRAM ROM/PROM

RETURN

L\

ADDRESS

STACK

h))

INSTRUCTION ADDRESS REGISTER

INSTRUCTION REGISTER

OPERAND ADDRESS REGISTER

—————— RAM

RO
R1_- BANK 0
R2 - BANK 0
R3 - BANK 0
R1_- BANK 1
R2 - BANK 1
R3 - BANK 1

Figure 3.5 A Programmer’s Conceptual Model

design, rather than conventional random logic
design. To facilitate the programming task of the
system designer, we present a conceptual model of
the 2650 CPU in Figure 3.5. While designing,
coding and debugging programs, the system de-
signer should interpret the operation of the micro-
processor during the execution of each instruction
in terms of these registers. The reader is urged to

go over the 2650 instruction set, documented in

Appendix A, by seeing what happens to the con-
tents of these registers after the execution of each
instruction.

In the following sections, we will propose two de-
signs for the ITS. We motivate the reader to con-
sider these designs by summarizing the main soft-
ware and hardware features of each design. As can
be seen from Table 3.2 the last design proposed is
significantly superior to the other two. We note

that (1) the hardware electronics parts count is
reduced by a factor of 10:1, (2) support compo-
nents are significantly reduced, (3) prototype de-
velopment is more methodical and, therefore, less
expensive, and (4) production costs are significantly
reduced. We will return to this table while con-
sidering the proposed designs.

3.4 Microprocessor-Based ITS Using a UART

By designing a general purpose serial 1/0 interface
between the Signetics 2650 microprocessor and the
teletype, we can transfer the burden of designing
hardware control circuitry to implement the
necessary functions, as in the random logic based
design, to that of designing a software program
within the microprocessor.

The basic design approach is to use a UART, as in
the previous design of Section 3.2, to convert from
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Table 3.2 Software/Hardware Comparison of the Designs

HARDWARE
IC PARTS SUPPORT* PROTOTYPE PRODUCTION COST
DESIGN COUNT COMPONENTS DEVELOPMENT ESTIMATE (%)**
Conventional 75 Substantial | Significant Hardware 100%
Debugging
Microprocessor 18 Same Some Hardware Debugging 40%
Based (1) Software Debugging
- 7 | (350 bytes)*** | -
Microprocessor 6 Negligible Software Debugging 10%
Based (2) (250 Bytes)***

*Support components— PC board, connectors, cables, power supplies, cooling, packaging, etc.
**Quantities of 100 units; amortized development costs.

***Excludes comment cards.

serial teletype /0 to the more convenient parallel
1/0. Then, the parallel input/output data bus of
the microprocessor is connected to the parallel
port of the UART. The additional control circuitry
required to accomplish this is presented in Figure
3.6. The signals lines on the left hand side of the

page are the Signetics 2650 pins. The number of
IC packages to implement this version is 18, and
the length of the software program is less than

350 bytes.

The flow chart for this program is documented in

PRIORITY IN
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E/NE>— D“ iNfB UART TTY
GPACK —— o Y Pout
Y AD|N
AD - @NBO READ STATUS—
RO»> 21 1 WRITE CMD — X7
R/W> |20 37 neaooata
A f
- L_ﬂ
WRP HcoMmAND| | | STATUS Y8
A I
DBUS» < 5 P |
- .C.
INTREQ < "= 8
INTACK
L‘_\
|

OPREQ——

INT ADRS

Figure 3.6 General Purpose Serial 1/0 Interface (ITS)
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Appendix B and the corresponding assembly lan-
guage program listing is presented in Appendix C.
The main ITS software program flow chart is de-
picted in Figure 3.7, describing the process of text
insertion, including the main subroutines. Refer-
ring to Figure 3.7, we begin by initializing the ITS

in the subroutine labeled INIT; this entails clearing
the typewriter control mechanism, the keyboard
buffers and the memory in which the text is
stored. Then, subroutine ““IN’ gets a character
from the keyboard buffer. Since the hardware
interface is parallel, the 7-bit character pattern is

N

INIT \

INITIALIZE THE TYPEWRITER,
BUFFERS AND MEMORY

@ | -

\

/ TN

YES IS
THE CHARACTER

NULL?

Z CNTL \

IF CONTROL CHARACTER
THEN PERFORM FUNCTION

YES

WAS CHARACTER
A CONTROL FUNCTION?

GET A CHARACTER
FROM THE KEYBOARD BUFFER

IS EDITOR IN PRINT
ONLY MODE?

NO

/ SAVE \

ADD CHARACTER TO
TEXT BUFFER

WAS THERE ROOM IN
THE BUFFER FOR THE
CHARACTER?

NO

N
2
v

PRINT THE
CHARACTER

Loor

Figure 3.7 ITS Program Flowchart
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ERASE
CONTROL —~CHARACTER:
CONTROL E

!
|
|

1

C RETURN >

The sequence of operations that takes place within
this routine is further expanded in Figure 3.8. The
character just received is compared by the 2650
against known values of control characters. If a
match is found, like the RUBOUT control character
(Figure 3.9), from the TTY, the control function is
executed. In this example, the RUBOUT character
causes delete of the last character in memory. The
delete-character subroutine is called by an instruc-
tion to execute the delete task. Next, the deleted
character is “‘echoed’’ to the TTY so the user can
verify what he deleted.

Proceeding to the next level of detail, let's look at
what happens inside the delete character routine,
documented in Figure 3.9. Referring to this figure,
we note that the main operation in this routine is
the replacement of the given character with a null
character. In the 2650, a null character is NULL rep-
resented by an eight-bit byte containing all zeros.
This byte is readily generated by the logical function
instruction called “EXCLUSIVE OR" discussed in
Chapter II. All we have to do is “EXCLUSIVE OR”
the contents of Rg with itself. This is accomplished
by the instruction:
EXCLUSIVE OR, Rg

Note that it is implicit in this instruction that the
other register to be EXCLUSIVE OR’ed is Rg. We
will consider a version of the echo character subrou-
tine in the next section.

In the foregoing discussion, we began with the main
ITS program of Figure 3.7. Then, we looked at the

Figure 3.8 ITS Input Character Decode Machine
(CNTL) Flowchart

transferred to the 2650 by a simple five instruction
routine. We will discuss this routine at length in
this section. (See Figure 3.10.) Note that the line
from the teletype input is high (+5V or a logical 1)
when no character is being transmitted, as in
Figure 3.2. In this hardware configuration, the

UART handles the task of determining whether or

not a character is being sent. In the next section,
we will propose a configuration where this func-
tion is performed by software. (See Figures 3.11
and 3.13.)

The next operation in the basic ITS flow chart (see
Figure 3.7) depicted by subroutine ‘CNTL" is
the determination of the type of character just
received:

1. Character for memory storage.
2. TTY control character for memory storage.
3. Control character for text control purposes.
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flow chart of a specific routine “CNTL’’ in Figure
3.8. Subsequently, we looked at a specific routine
“RUBOUT"” in Figure 3.9 that was called in
“CNTL’ of Figure 3.8.

Finally, we elaborated on the way in which the
2650 generated the null character by the EXCLU-
SIVE OR operation discussed in Chapter Il.

This process of sequentially
proceeding to the next level of
detail until the task to be per-
LTOP DOWN DESlGNl formed can be described by
the microprocessor instruc-
tions themselves is called top-
down design.

Starting with a system specification, the job of the
microprocessor-based system designer is to plan the
functioning of the entire system by this logical top-
down programming process. Thus, the emphasis in
developing a good design in a timely manner is to
design well-structured, easy to debug/modify/un-
derstand programs. Additional details regarding
this are presented in Appendix B.

Going back to Figure 3.7, we see that the next
task, after performing the functions in routine
“CNTL" is to check the editor status. If the editor
is not in the print mode, then it implies that we
are inputting the text; consequently, we add a
character to the text buffer memory in routine
“SAVE.” Of course, if the character was a control
operation as described in the last paragraphs, it is
not stored in memory. But, if it is one of the fol-
lowing, it is stored in memory:

1. Character for Memory Storage

2. TTY Control Character for Memory Storage
(like typewriter carriage, return, line feed, or
advance paper and stop)

After ensuring that there was, indeed, room left
to store this new character, we send the character
back to the teletype printing mechanism (ECHO),
so that the user can verify what he typed in. This
whole process is repeated in an endless loop until

an appropriate command is decoded to indicate the

completion of the text insertion task.

Going back to Figure 3.7, let us see what the se-
quence of operations must be, to get a character
from the keyboard buffer into one of the 2650
registers, say R1. The flow chart of this routine is
shown in Figure 3.10. Since we have a parallel
I/0 channel (see Figure 3.6), we can directly load
the character from the keyboard buffer into R1.

ASSEMBLY LANGUAGE

FLOWCHART

PROGRAM
“INT
CHARACTER FROM SET CONSTANTS
KEYBOARD BUFFER PARB = 127
VIA PARALLEL 1/0 NULL=0
CHANNEL
|
1

LOAD CHARACTER

FROM KEYBOARD I —
BUFFER (KBUF) INTO A

REGISTER (EG. R1)

l

REMOVE MSB FROM
8 BIT CHARACTER

l

REPLACE CHARACTER
IN KBUF WITH LOAD RO, NULL

NULL CHARACTER STORE RO, KBUF

1 l
()

LOAD R1, KBUF

ANDI.R1, PARB

Figure 3.10 Input Character Routine Flowchart
and Corresponding Assembly Language
Instructions for a Parallel 1/0 Channel

Then, we replace the most significant bit (MSB) of
the contents of R1 by zero to get the 7 bit charac-
ter code. Finally, the contents of the keyboard
buffer are zeroed out by loading in the prestored
null character. On the right hand side of the flow
chart, Figure 3.10 shows the corresponding assem-
bly language instructions to implement this pro-
gram. The operation of these LOAD, STORE, and
AND instructions was described in Chapter Il. The
reader is invited to refer to Appendix A for the
complete set of 2650 instructions. The listing of
this particular program in 2650 assembly language
can be found in Appendix C for the subroutine
‘KEYIN,’ whose listing begins on page 4, line 173.

We will return to the flow ¢hart in Figure 3.10 to
compare it to that required when the 1/0O channel
is serial, as in the design proposed in the next
section.

As noted in Table 3.2, the implementation of this
microprocessor-based |ITS required 18 IC packages
containing a program that is less than 350 bytes
long; a listing of this program is given in Appendix
C. We are now in a position to discuss the main

reasons why microcomputers have a significant
advantage over random logic:
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. Reduces system complexity

. Ease of development

. Flexibility (ease of system function modification)
. Reliability

. Ease of support

. Cost

OO WN =

Comparing the two implementations, we can see
that the system complexity is significantly reduced;
this will be even more evident in the design pro-
posed in the next section. Since the hardware com-
plexity is reduced in terms of parts count, it is
much easier to lay out the printed circuit boards;
cross talk, and other interference problems are re-
duced; connections, cabling cooling and packaging
requirements are reduced. Most significantly, the
2650 requires only one +5V supply.

Other reasons for the ease of development are that
a software program is often much easier to under-
stand than an equally complex piece of hardware.
Debugging software is much more systematic and,
therefore, often less time consuming than hard-
ware troubleshooting. For example, problems
such as electronic circuit malfunction, interfacing,
timing pulse alignment, radio frequency inter-
ference are practically eliminated. Debugging the
2650 is particularly easy because its internal cir-
cuitry is static rather than dynamic; consequently,
the clock can be stopped to look at its pins with-
out losing data or status. The microcomputer-
based system is more flexible and easier to support
because of the fact that software can be readily
modified and is readily documentable. Reliability is
greatly enhanced, again due to reduced parts count.

All the above factors can finally be translated into
cost savings to the manufacturer. Software devel-
opment is a one-time cost that can be spread
across the production run. Field support is easier
with fewer spares required in stock. Finally, the
product can be continually upgraded without
altering the hardware packaging leading to market
competitiveness in terms of the introduction of
newer products. Additional comments related to
the cost-effectiveness of microprocessor-based
solutions to electronic system design problems are
made in the next section.

3.5 Microprocessor-Based ITS Using Serial 1/0

We noted in Section 3.1 that the teletype was a
serial 1/0O device. In the microprocessor-based
design of Section 3.4, it was necessary to use a
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UART to convert the serial I/O teletype channel to
a parallel channel so that the characters could be
input to the 2650 via the parallel data bus shown
in Figure 3.4. But, for an application involving a
relatively low speed device such as a teletype, there
is no real need to use the high speed parallel data
transfer paths of the 2650.

Recall that the ‘’sense’’ bit in
the 16-bit program status
word (PSW) is located in the
most significant bit location,
i.e., bit 7 of the upper half of
the PSW designated as PSU;
and bit 6 is the flag bit in the
PSU.

L PSU

Referring to Figure 3.4, these bits are directly
accessible on the 2650 pins. These two pins (the

Ar omino

serial 1/0 channel in the following manner.

For inputting TTL compatible serial input data,
we can use the sense line. The sense bit is normally
a 1 (+bV) between data transfers (see Figure 3.2).
The line drops to zero volts (0) to indicate a start
bit. Then 8 bits are serially transferred. After this,
the line goes back to a 1 (+5V) for one or two
stop times, depending on the data transfer rate.

This line can be sampled

inside the 2650, under soft-

ware control, by executing a

STORE PSU instruction which
[ STORE PSU ] stores the contents of the PSU

into Rg and sets the condition
code bit (CC) of the PSW.
For outputting TTL compat-
ible serial data, we can use
the flag line.

To transmit a start bit back
to the teletype, we set the flag
[ STOP BIT J bit of the PSU to a O; to trans-
mit a stop bit, we set the flag
toal.

Moreover, to transmit data
bits, the flag bit is set the same
as the corresponding data bit.
] This process is accomplished
under software control by exe-
cuting the SET PSU in-
struction.

L SETPSU -




Thus, we realize that, in the case of this dedicated
microprocessor application (namely ITS) there is
really no need for the generalized serial |/O inter-
face proposed in Figure 3.6. Instead, we can
directly use the sense/flag pins on the 2650 for
serial 1/0. The resulting hardware configuration for
this dedicated ITS application is shown in Figure
3.11.

Three control signals from the Signetics 2650 con-
trol the ITS memory, not including the address bus:

OPREQ is a coordinating sig-

L OPREQ nal signaling that an external
operation is taking place.

p OPACK is grounded and un-

L OPACK used since the 2606 and 2608

respond in less than 1 usec
to a 2650 request.

R/W selects a read or write

L AW l operation on the 2606 RAM

memory, and WRP provides a
timing pulse for the same.

The 10th address bit, ADR10,
acts as a chip select. It places

{ ADR10 l the 2608 in address space O to

1023, and the 2606 is in the
address space 1024 to 2047.

And ADRO-ADR9 select one location in those ad-
dress spaces. Notice that we have a total of 6 IC
packages and only one +5V supply drawing about
500 milliamps! The hardware for this system is
available from Signetics on a 2-inch by 3-inch
printed circuit card!!

Now let us look at the software program. Func-
tionally the software program becomes simpler! We
no longer have to generate the UART control
signals. The only significantly new software pro-
gram is one that converts the serial input from

® 256 BYTES RAM
® 1K BYTES ROM
® 6 PACKS

SENSE Iy

Y

¢ +5V@ APPROX 500Ma
TTY

A

DBUS

FLAG p—9— |
Lo

|

l

I

| ,
|
2650 R/W j (.
WRP I ::D&_T——__L——AF+-WW »R/W

—“j |
L
T
I | 4 ‘

2606 2606 2608

OPACK |
|
OPREQ
A0 -
AQ-9 10
cLock |« 74123

Figure 3.11 Optimum 2650 Solution
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the sense line to parallel byte format for further
processing and the logic required to set the flag
line to echo or print the proper character on the
teletype printer. We will look at this program in
more detail in the following.

Referring to Figure 3.7, we note that keyboard
processing is done in subroutine ““IN.” Let us dis-
cuss the detailed flow chart and the corresponding
program for this subroutine, using the simplified
instruction set developed in Chapters Il and I1I.
The flow chart for this conversion is shown in
Figure 3.12. The first job is to continually sample
the sense line until a start bit is detected. Then, we
introduce a delay of half the bit time to test the
sense line again to ensure that it was not a noise
spike. After ensuring that it was indeed the start
bit, we then introduce a delay of one bit time to
test the sense line for the first bit of the 7-bit
character. This process is repeated until all 7 bits
are received and put into the proper parallel byte
format.

The delay for any timed operation is a simple
matter in the Signetics 2650 Microprocessor. Any
register, like Rg, is loaded with a number.

The register is decremented by
one each time through a pro-
gram loop (a loop is a se-
[ LooP l quence of instructions which
transfers execution from finish
to start and is usually exe-
cuted more than once).

When the register is tested (each time through the
loop) and found equal to zero, the timed delay is
complete. The timing is provided by three things:

1. 2650 input clock frequency 1 MHz in the case
of the ITS. The 2650 clock frequency is variable
up to a maximum of 1.25 MHz.

2. Instruction execution time. The time to execute
an instruction is a fixed value which depends on
the type of instruction and the clock frequency.
The total of the execution times of every in-
struction in the loop gives the loop delay time.

3. Number loaded into the register being used in
the program loop. This is the number of times
the loop is executed, and, therefore, the number
of loop delay times.
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Example

Clock frequency =1.25 MHz

Loop contains instruction A, B, and C

Instruction execution times A =428 usec
B =4.8 usec
C=7.2 usec

Loop execution time = 16.8 usec

Number of times through loop =100
Total delay time = 1,680 msec

Once a valid start bit has been detected, a delay of
one bit time (~ 9.1 msec) is made until the middle
of the first data bit. The middle of the first data bit
was reached in the following manner: the leading
edge of the Start bit was detected because the
2650 program was continuously looking foritina

tight loop.  The program loop is very fast compared
to the frequency of the sense signal (several micro-

seconds compared to 9.1 milliseconds); so when

the start bit was detected, it can be assumed the
leading edge was detected and not the middle. The
middle of the start bit was located due to the % bit
time delay during the noise check. Finally, the
middle of the first data bit was detected due to the
one bit time delay from the middle of the start bit.

The first data bit is sampled on the sense line as
“1"" or “0"" (high or low) and saved. When 7 bits
have been received in this manner (a count is kept
in Rp), an entire character has been received.

The serial to parallel conversion for each character
is accomplished by transferring a data bit from the
sense bit into Rg with the “STORE PSU" .instruc-
tion. The data bit alone is left in Rg after execu-
tion of the “AND” instruction. The last data bit
sampled is assembled together with the data bits
previously received in Rg by the “INCLUSIVE"
OR" instruction. The “STORE" instruction puts
the contents of Rp into Rj. Finally, the
“ROTATE RIGHT" instruction gets the contents
of R1 ready for the next bit of the character.

The way in which the verbal flow charts of Figure
3.10 and 3.12 can be implemented using the set of
basic instructions developed in Chapter Il and
Il (e.g., see Table 2.11) has been shown. The in-
terested reader is encouraged to follow through
this translation process, from the flow chart to the
assembly language instruction program. We call
the reader’s attention to the increased complexity
of the flow chart in Figures 3.12 and 3.13 to that
described in Figure 3.10. But this is a small one-
time software development cost leading to a signi-
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STOREPSU | ————— } ‘STORE’PSU IN RO
CONTENTS OF RO
AND 128 | —m———— ‘AND’ED WITH 128 = 27
TO GET SENSE BIT
Y ——— ) INCLUSIVE OR’ R1WITH RO
INCLUSIVE OR R1 | AND SAVE RESULT IN RO
STORER1 | ————— { 'STORE'ROINR1
ROTATE RIGHT R1 ——————{ ‘ROTATE RIGHT' R1

Figure 3.13 Serial to Paraliel Conversion
Flowchart

ficant reduction in hardware complexity and
cost as can be seen by comparing Figure 3.6 and
3.11.

The “SET PSU’’ instruction is used to transmit
data back to the teletype; this is done either to
“ECHOQO’" the character that has just been received
from the teletype or it is done when characters
are being read out from the text buffer, on
command from the user. A preliminary flow chart
for the echo character subroutine is presented in
Figure 3.14. The reader is urged to translate this
into a set of instructions.

The comparison between the three designs pro-
posed was presented earlier in Table 3.2. We
note that because of the specialized configuration
used in the last design solution, the resulting soft-
ware program is shorter than the parallel I/O inter-
face microprocessor solution by almost thirty per-
cent. We can, therefore, conclude that the more
successful system designers will (1) attempt to per-
form as many functions in software as possible and
(2) design well-structured software programs, to
achieve cost-effective solutions. Technical details
pertinent to developing well-structured programs
are documented in Appendix B.

3.6 Other Features of the Signetics 2650

There are several other features of the Signetics
2650 that are important in various applications. We
will note a few of them in the following. The ad-
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vanced reader is referred to the 2650 Signetics
manuals for information on features like DMA and
vectored interrupt. A few of the features are re-
viewed below.

The seven general purpose registers are such a
feature. This is a relatively large number of regis-
ters on-board the chip. This feature gives more
flexible data manipulation capability including
storage of intermediate variables during an in-
volved computation. Another important feature
is that the on-board chip RAS is 8 levels deep.
Eight levels is generally enough to handle nesting
subroutines, and having the RAS on-board makes
access faster.

( ECHO CHARACTER W
SUBROUTINE /

N
!

SEND 2 STOP BITS
WITH FLAG

Y

SEND START BIT

Y

SEND 7 BIT
CHARACTER SERIALLY

Y

SEND STOP BIT

!

C RETURN >

Figure 3.14 Echo Character Subroutine Flowchart




Another feature of importance is the instruction
set. The 2650 has a powerful instruction set with 8
addressing modes. The modes are:

. Register

. Immediate

. Relative

. Relative Indirect

. Absolute

. Absolute Indirect

. Absolute Indexed

. Absolute Indirect Indexed

ONOOBD_WN -

This is a very large number of addressing modes
and it gives program flexibility.

Program flexibility allows a program to be written
with fewer instructions. This means a savings in
memory space and faster program execution.
Faster program execution means that the Signetics
2650 can handle more tasks before increased com-
puting power is required.

Microprocessors operate in two possible modes in a
system, polled or interrupt, to service a number of
external devices.

For relatively slow processes
or ones that can wait to be
POLLING ] serviced, the microprocessor
sequentially scans the internal
devices; this is called polling.

When it finds a device that needs servicing, it
performs the required function and the processor
goes back to sensing.

In the interrupt mode of oper-
ation, generally used for real-
time processing applications,
INTERRUPT l the microprocessor is inter-
rupted to do something special
before executing the next
instruction.

The microprocessor saves the contents of the pro-
gram counter and branches to the interrupt routine
to service the interrupting device, and upon com-
pletion, returns to the original program step.

The Signetics 2650 processor
incorporates the fastest mode
of interrupt operation, name-
ly, vectored interrupt. With
this feature, the 2650 not only

recognizes which of the many
devices is requesting service
but the interrupt also causes
a direct branch to the ser-
vicing routine. An example of
this is an anticipated power
failure.

VECTORED
INTERRUPT

The contents of the critical registers would need to
be preserved in non-volatile storage. A vectored
interrupt would branch immediately to the pro-
gram required to do this.

Another useful feature in microprocessors is the
ability to access memory from an external device
without having to pass the data through the 2650.

This process of direct memory
access (DMA) to read or write
blocks of data directly into

[ DMA ] memory without disturbing

the processor, is particularly
useful in real-time processing
applications.

The Signetics 2650 allows DMA to be performed in
three possible ways; the particular choice depends
on the size of the data block to be transferred in
or out of memory and the rate at which this trans-
fer is to be accomplished. The advanced reader is
referred to the Signetics 2650 manuals for a de-
tailed exposition of these and other input/output
capabilities of the processor.

In conclusion, the Signetics 2650 Microprocessor
has a number of features (see Figure 3.15) which
make it both easy to use and powerful. Features
like TTL compatible 1/0, single +5V power, static
operation, and single phase clock make for ease of
use. Features like seven general purpose registers,
RAS on chip, vectored interrupt, serial 1/0 on
chip, and 8 addressing modes make for processing
power; processing power means less external logic
which translates into less cost for every unit of a
microprocessor-based system produced. The Sig-
netics 2650 is a general purpose microprocessor
which is applicable to a wide range of applications.
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EASY TO USE LEADS TO LOWER SYSTEM COST

SINGLE +5 VOLT POWER SUPPLY SINGLE +5 VOLT POWER SUPPLY
SINGLE @, TTL CLOCK SINGLE @, TTL CLOCK
ALL I/O TTL COMPATIBLE ALL I/O TTL COMPATIBLE
STATIC USES SLOW MEMORIES
RAS ON CHIP 7 G.P. REGISTERS
POWERFUL INDEXING RAS ON CHIP
EASY-TO-UNDERSTAND INSTRUCTIONS 8 ADDRESS MODES
SIMPLE MNEMONICS VECTORED INTERRUPT

SERIAL /0 CAPABILITY
STANDARD SUPPORT CIRCUITS
DIRECT MEMORY ACCESS
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Figure 3.15 Signetics 2650 Features
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QUIZ FOR CHAPTER IIl, INTELLIGENT TYPEWRITER SYSTEM

. What is a use of stopping the clock in a system?

. How does a microprocessor affect system hardware count when applied to a random logic system?
. What is the meaning of serial/parallel conversion?

. Why are programs written in assembly language?

. What tool creates object code?

. What is the use of a flow chart?

. What can perform serial/parallel conversion besides hardware?

. What is the relationship between programming costs and hardware costs?

. What is a polled interrupt?

What are the two characteristics of polled interrupt operation?

What is a vectored interrupt?

Why use a vectored interrupt?

Why are general purpose registers on-board the microprocessor important?
Why use microprocessors?

What are the two main factors in microprocessof selection?

What are the two main objectives of the successful system designer?
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ANSWERS TO QUIZ ON CHAPTER |

. System debug; freeze system action to observe.

. Reduces hardware count.

. Converting a serial (one-at-a-time) bit stream into parallel form (bytes).

. Assembly language is easily remembered and is a powerful tool in addressing and debugging.

. Assembler.

. In program development, to organize a program.

. A program.

. Programming cost occurs once. Hardware cost is multiplied by every unit produced.

- A microcomputer polling subroutine scans 1/0 devices to determine the source of an interrupt.
- Slower polling subroutine takes memory space.

. The interrupting 1/0 device identifies itself to the microcomputer causing a branch to the proper service

routine address.

Speed eliminates need for storage of polling routine.

Storage of intermediate results of a computation leading to higher processing speeds.

Cost reduction.

Overhead electronics and CPU capability.

Perform as many system functions in software as possible and design well-structured software programs.
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GLOSSARY OF MICROPROCESSOR TERMS

A

ABBREVIATED ADDRESSING:

A modification of the Direct Address mode which
uses only part of the full address and provides a
faster means of processing data because of the
shortened code.

ACCUMULATOR:

One or more registers associated with the ALU
which temporarily store sums and other arith-
metical and logical results of the ALU.

ADAPTER:

A device used to effect operative capability be-
tween different parts of one or more systems or
subsystems.

ADDRESSING MODES:

An address is a coded instruction designating the
location of data or program segments in storage.
The address may refer to storage in registers or
memories or both. The address code itself may be
stored so that a location may contain the address
of data rather than the data itself. This form of
addressing is common in microprocessors. Ad-
dressing modes vary considerably because of ef-
forts to reduce program execution time.

ALU (ARITHMETIC AND LOGIC UNIT):

The ALU is one of the three essential components
of a microprocessor, the other two being the regis-
ers and the control block. The ALU performs
various forms of addition and subtraction; the logic
mode performs such logic operations as ANDing
the contents of two registers, or masking the con-
tents of a register.

ARCHITECTURE:

Any design or orderly arrangement perceived by
man; the architecture of the microprocessor. Since
the extant microprocessors vary considerably in
design, their architecture has become a bone of
contention among specialists.

ASSEMBLER PROGRAM:

The Assembler Program translates man-readable
source statements (mnemonics) into machine
understandable object code.

ASSEMBLY LANGUAGE:

A machine oriented language. Normally the pro-
gram is written as a series of source statements
using mnemonic symbols that suggest the defini-
tion of the instruction and is then translated into
machine language.

ASYNCHRONOUS:

Operation of a switching network by a free-running
signal which signals successive instructions, the
completion of one instruction triggering the next.
There is no fixed time per cycle.

BAUD RATE:

A measure of data flow. The number of signal ele-
ments per second based on the duration of the
shortest element. When each element carries one
bit, the Baud rate is numerically equal to bits per
second (bps). The Baud rates on UART data sheets
are interchangeable with bps.

BCD (BINARY CODED DECIMAL):

Each decimal digit is binary coded into 4-bit
words. The decimal number 11 would become
0001 0001 in BCD. Also known as the 8421 code.

BENCHMARK:

Originally a surveyor’'s mark used as a reference
point in surveys. In connection with microproces-
sors, the benchmark is a frequently used routine or
program selected for the purpose of comparing
different makes of microprocessors. A flow chart
in assembly language is written out for each micro-
processor and the execution of the benchmark by
each unit is evaluated on paper. It is not necessary
to use hardware to measure capability by bench-
mark.

BIDIRECTIONAL:

A term applied to a port or bus line that can be
used to transfer data in either direction.
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BINARY:

A system of numbers using 2 as a base in contrast
to the decimal system which uses 10 as a base. The
binary system requires only two symbols, 0 and 1.
Two is expressed in binary by the number 10 (read
one, zero). Each digit after the initial 1 is multi-
plied by the base 2. Hence the following table
expresses the first ten numbers in decimal and
binary:

DECIMAL BINARY

0 0

1 1

2 10

3 1

4 100

5 101

6 110

7 11

8 1000

9 1001
BRANCH:

Refers to the capability of a microprocessor to
modify the function or program sequence. Such
modification depends on the actual content of
the data being processed at any given instant.

BREAKPOINT:

A program point indicated by a breakpoint flag
which invites interruption to give the user the
opportunity to check his program before con-
tinuing to its completion.

BUFFER:

A circuit inserted between other circuit elements
to prevent interactions, to match impedances, to
supply additional drive capability, or to delay rate
of information flow. Buffers may be inverting or
non-inverting.

BUS DRIVER:

An integrated circuit which is added to the data
bus system to facilitate proper driver to the CPU
when several memories are tied to the data bus
line. These are necessary because of capacitive
loading which slows down the data rate and pre-
vents proper time sequencing of microprocessor
operations.

BUS SYSTEM:

A network of paths inside the microprocessor
which facilitate data flow. The important buses in
a microprocessor are identified as Data Bus, Address
Bus, and Control Bus.
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BYTE:

Indicates a pre-determined number of consecutive
bits treated as an entity. For example, 4-bit or 8-
bit bytes. “Word” and ‘‘Byte’”” are used inter-
changeably.

CLOCK:

A generator of pulses which controls the timing of
switching circuits in a microprocessor. Clock fre-
quency is not the only criterion of data manipula-
tion speed. Hardware architecture and program-
ming skill are more important. Clocks are a requi-
site for most microprocessors and multiple phased
clocks are common in MOS processors.

COMBINATIONAL LOGIC:

A circuit arrangement in which the output state ir
determined by the present state of the input. Alsc
called Combinatorial Logic. (See also Sequential
Logic.)

COMPILERS:

Compilers translate higher-level languages into ma-
chine codes.

CONDITION CODE:

Refers to a limited group of program conditions
such as carry, borrow, overflow, etc.; which are
pertinent te the execution of instructions. The
codes are contained in a Condition Codes
Register.

CONTROL BLOCK:

This is the circuitry which performs the control
functions of the CPU. It is responsible for decoding
microprogrammed instructions and then generating
the internal control signals that perform the
operations requested.

CONTROL BUS:

Conveys a mixture of signals which regulate system
operation. These ‘“‘traffic’’ signals are commands
which may also originate in peripherals for transfer
to the CPU or the reverse.

CONTROL PROGRAM:

The control Program is a sequence of instructions
that will guide the CPU through the various opera-
tions it must perform. This program is stored
permanently in ROM memory where it can be
accessed by the CPU during operations.



CPU (CENTRAL PROCESSING UNIT):

The heart of any computer system. Basically the
CPU is made up of storage elements called regis-
ters, computational circuits in the ALU, the
Control Block, and 1/0. As soon as LS| technology
was able to build a CPU on an IC chip, the micro-
processor became a reality. The one-chip micro-
processors have limited storage space, so memory
implementation is added in modular fashion. Most
current microprocessors consist of a set of chips,
one or two of which form the CPU.

CROM (CONTROL READ ONLY MEMORY):

This is a major component in the control block of
some microprocessors. It is a ROM which has been
microprogrammed to decode control logic.

CROSS-ASSEMBLER:

When the program is assembled by the micropro-
cessor that it will run on, the program that per-
forms the assembly is referred to simply as an as-
sembler. If the program is assembled by some other
microprocessor, the process is referred to as cross-
assembly. Occasionally the phrase ‘‘native assem-
bler”” will be used to distinguish it from a cross-
assembler.

D

DAISY CHAIN:

A bus line which is interconnected with units in
such a way that the signal passes from one unit to
the next in serial fashion. The architecture of the
Fairchild F-8 provides an example of daisy-chained
memory chips. Each chip connects to its neighbors
to accomplish daisy-chaining of interrupt priorities
beginning with the chip closest to the CPU.

DATA BUS:

The microprocessor communicates internally and
externally by means of the data bus. It is bidirec-
tional and can transfer data to and from the CPU,
memory storage, and peripheral devices.

DATA COUNTER:

(See Program Counter)

DATA FIELD POINTER:
(See Stack Pointer)

DEBUG:

As used in connection with microprocessor soft-
ware, debugging involves searching for and elim-
inating sources of error in programming routines.

Finding a bug in software routine is said to be as
difficult as finding a needle in the proverbial
haystack. A single step tester is the suggested
method, so that each instruction operation can be
checked individually.

DECREMENT:

A programming instruction which decreases the con-
tents of a storage location. (See also increment and
decrement.)

DEDICATED:

To set apart for some special use. A dedicated
microprocessor is one that has been specifically
programmed for a single application such as
weight measurement by scale, traffic light control,
etc. ROMs by their very nature (Read-Only) are
“dedicated’’ memories.

DIRECT ADDRESSING:

This is the standard addressing mode. It is charac-
terized by an ability to reach any point in main
storage directly. Direct addressing is sometimes
restricted to the first 256 bits in main storage.

DMA (DIRECT MEMORY ACCESS):

A method of gaining direct access to main storage
to achieve data transfer without involving the CPU.
The manner in which CPU is disabled while DMA is
in progress differs in different models and some use
several methods to accomplish DMA.

E

EXECUTION TIME:

Usually expressed in clock cycles necessary to
carry out an instruction. Since the clock frequency
is known, the actual time can be calculated. Clock
frequencies can be varied.

EXTENDED ADDRESSING:

Refers to an addressing mode that can reach any
place in memory. (See also Direct Addressing.)

F

FETCH:

To go after and return with things. In a micropro-
cessor, the “objects”” fetched are instructions
which are entered in the instruction register. The
next, or a later step in the program, will cause the
machine to execute what it was programmed to do
with the fetched instructions. Often referred to as
an “instruction fetch.”
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FIELDS:

A source statement is made up of a number of
code fields, usually four, which are acceptable by
the assembler. The four fields may connote Label,
Operator, Operand, and Comment. Fields are also
applicable to data storage. The eight bits stored in
a memory location might contain two 4-bit fields,
or eight 1-bit fields, etc.

FIRMWARE:

Software instructions which have been perma-
nently frozen into a ROM are sometimes referred
to as Firmware.

FLAG BIT:

An information bit which indicates some form of
demarcation has been reached such as overflow or
carry. Also an indicator of special conditions such
as interrupts.

FLOW CHART OR FLOW DIAGRAM:

A sequence of operations charted with the aid of
symbols, diagrams, or other representations to
indicate an executive program. Flowcharts enable
the designer to visualize the procedure necessary
for each item on the program. A complete flow-
chart leads directly to the final code.

H

HANDSHAKING:

A colloquial term which describes the method used
by a Modem to establish contact with another
Modem at the other end of a telephone line. Often
used interchangeably with buffering and inter-
facing, but with a fine line of difference in which
handshaking implies a direct package to package
connection regardless of functional circuitry.

HARDWARE:

The individual components of a circuit, both passive
and active have long been characterized as hard-
ware in the jargon of the engineer. Today, any
piece of data processing equipment is informally
called hardware.

HARD-WIRED LOGIC:

Random Logic design solutions require intercon-
nection of numerous integrated circuits repre-
senting the logic elements. An example of hard-
wired logic is the use of a hard-wired diode matrix
instead of a ROM. These interconnections, whether
done with soldering iron or by printed circuit
board, are referred to as hard-wired logic in con-
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trast to the software solutions achieved by a pro-
grammed ROM or Microprocessor.

HIGH LEVEL LANGUAGE:

This is a problem-oriented programming language
as distinguished from a machine-oriented program-
ming language. The former’s instruction approach
is closer to the needs of the problems to be
handled than the language of the machine on
which they are to be implemented.

HEXADECIMAL:

Whole numbers in positional notation using 16 as
a base. (See Octal and Compare.) Since there are
16 hexadecimal digits (0 through 15) and there
are only ten numerical digits (0 through 9) an
additional six digits representing 10 through 15
must be introduced. Recourse is had to the alpha-
bet to provide the extra digits. Hence, the least
significant hexadecimal digits read: 0, 1, 2, 3, 4, 5,
6,7,8,9, A,8B,C,D,E, F. The decimal number 16
becomes the hexadecimal number 10. The decimal
number 26 becomes the hexadecimal number 1A.

IMMEDIATE ADDRESSING:

In this mode of addressing, the operand contains
the value to be operated on, and no address refer-
ence is required.

INCREMENT (AND DECREMENT):

These two words are software operations most
often associated with the stack and stack pointer.
Bytes of information are stored in the stack regis-
ter at the addresses contained in the stack pointer.
The stack pointer is decremented after each byte
of information is entered into the stack; it is
incremented after each byte is removed from the
stack. The terms can also refer to any addressable
register.

INDEX REGISTER:

The Index Register contains address information
subject to modification by the Control Block
without affecting the instruction in the memory.
The IR information is available for loading onto
the stack pointer when needed.

INDIRECT ADDRESSING:

Addressing a memory location which contains the
address of data rather than the data itself.



INSTRUCTION SET:

Constitutes the total list of instructions which can
be executed by a given microprocessor and is
supplied to the user to provide the basic informa-
tion necessary to assemble a program.

INTERFACE:

Indicates a common boundary between adjacent
components, circuits, or systems enabling the de-
vices to yield and/or acquire information from one
another. In the face of common usage, one must
regretfully add that the words Buffer, Handshake,
and Adapter are interchangeable with Interface.

INTERRUPT:

An interrupt involves the suspension of the normal
programming routine of a microprocessor in order
to handle a sudden request for service. The impor-
ance of the interrupt capability of a microproces-
sor depends on the kind of applications to which
it will be exposed. When a number of peripheral
devices interface the microprocessor, one or
several simultaneous interrupts may occur on a
frequent basis. Multiple interrupt requests require
the processor to be able to accomplish the fol-
lowing: to delay or prevent further interrupts;
to break into an interrupt in order to handle a
more urgent interrupt; to establish a method of
interrupt priorities; and, after completion of
interrupt service, to resume the interrupted pro-
gram from the point where it was interrupted.

INTERRUPT MASK BIT:

The Interrupt Mask Bit prevents the CPU from re-
sponding to further interrupt requests until cleared
by execution of programmed instructions. It may al-
so be manipulated by specific mask bit instructions.

1/0 (INPUT/OUTPUT):

Package pins which are tied directly to the internal
bus network to enable 1/0 to interface the micro-
processor with the outside world.

JUMP:

The Jump operation, like the Branch operation, is
used to control the transfer of operations from one
point to a more distant point in the control pro-
gram. Jumps differ from Branching in not using the
Relative Addressing mode.

LABEL:

A label may correspond to a numerical value or a
memory location in the programmable system. The
specific absolute address is not necessary since the
intent of the label is a general destination. Labels
are a requisite for jump and branch instructions.

LIBRARY:

A collection of complete programs written for a
particular computer, minicomputer, or micro-
processor. For example, Second Order Differential
Equation may be the name of a program in the
Library of a particular computer; this program will
contain all the subroutines necessary to perform
the solution of second order differential equations
written in machine language and using the instruc-
tion set of this machine.

LIFO:
Last-In-First-Out buffer. (See Push Down Stack.)

LOGIC:

A mathematical treatment of formal logic in which
a system of symbols is used to represent quantities
and relationships. The symbols or logical functions
are called AND, OR, NOT, to mention a few
examples. Each function can be translated into a
switching circuit, more commonly referred to as a
‘‘gate.”” Since a switch (or gate) has only two
states—open or closed —it makes possible the appli-
cation of binary numbers for the solution of prob-
lems. The basic logic functions obtained from gate
circuits are the foundation of complex computing
machines.

LOOK AHEAD:

(1) A feature of the CPU which allows the machine
to mask an interrupt request until the following
instruction has been completed. (2) A feature of
adder circuits and ALUs which allow these devices
to look ahead to see that all carrys generated are
available for addition.

LOOPING:

Repetition of instructions at delayed speeds until
a final value is determined (as in a weight scale
indication) is called looping. The looped repititions
are usually frozen into a ROM memory location
and then jumped to when needed. Looping also
occurs when the CPU is in a wait condition.
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LSI (LARGE SCALE INTEGRATION):

At the beginning of the LS| era a count of 100
gates qualified for LSI. Today an 8-bit CPU can be
fabricated on a single chip.

Y]

MACHINE LANGUAGE:

The only language the microprocessor can under-
stand is binary. All other programming languages
must be translated into binary code before entering
‘the processor and decoded back into the original
language after leaving it.

MACRO COMMAND:

A program entity formed by a string of standard,
but related, commands which are put into effect
by means of a single macro command. Any group
of frequently used commands can be combined
into a macro command. The many become one.

MNEMONIC CODE:

These are designed to assist the human memory.
The microprocessor language consists of binary
words which are a series of O’s and 1's making it
difficult for the programmer to remember the
instructions corresponding to a given operation.
To assist the human memory, the binary numbered
codes are assigned groups of letters (or mnemonic
symbols) that suggest the definition of the instruc-
tion. LDA for load accumulator, etc. Source state-
ments can be written in this symbolic language and
then translated into machine language.

MICROINSTRUCTION:
(See Microprogram)

MEMORY:

The part of a computer system into which informa-
tion can be inserted and held for future use.
Storage and Memory are interchangeable expres-
sions. Memories accept and hold binary numbers
only. Memory types are core, disk, drum, and semi-
conductor.

MOS (METAL OXIDE SEMICONDUCTOR):

The structure of a MOS Field Effect Transistor
(FET) is metal over silicon oxide over silicon. The
metal electrode is the gate; the silicon oxide is
the insulator; and carrier doped regions in the
silicon substrate become the drain and source. The
result is a sandwich very much like a capacitor,
which explains why MOS is slower than bipolar
since the ‘capacitor sandwich’ must charge up be-
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fore current can flow. The three great advantages
of MOS are its process simplicity because of re-
duced fabrication stages; the savings in chip real
estate resulting in functional density; and the ease
of interconnection on chip. These qualities enable
MOS to break the LS| barrier, something bipolar is
just beginning to achieve. The hand-held calculator
and the microprocessor are triumphs of MOS-LSI
technology.

MICROPROCESSOR:

The microprocessor is a Central Processing Unit
fabricated on one or two chips. While no standard
design is visible in existing units, a number of well-
delineated areas are present in all of them: Arith-
metic & Logic Unit, Control Block, and Register
Array. When joined to a memory storage system,
the resulting combination is referred to in today’s
usage as a microcomputer. It should be added that
each microprocessor is supplied with an instruction
Set, and this software manual may be just as im-
portant to the user as the hardware.

MULTIPLEXING:

Multiplexing describes a process of transmitting
more than one signal at a time over a single link,
route, or channel. Of the two methods in use, one
frequency shares the bandwidth of a channel in
the same way hurdlers run and jump in their as-
signed lanes, thus permitting many contestants to
compete simultaneously on the same track. The
second way is to time-same multiple signals in the
same way that pole vaulters jump over the same
bar one after the other. The two methods may be
described as parallel and serial processing. Time-
sharing may not seem ‘‘simultaneous ” but it
should be remembered that the signal speed is
so fast that it is possible to multiplex four different
numbers through a single decoder-driver and have
them appear on four different displays without a
flicker to disturb the eye.

NESTING:

Nesting is referred to when a subroutine is enclosed
inside a larger routine, but is not necessarily part of
the outer routine. A series of looping instructions
may be nested within each other.



OBJECT PROGRAM:

The end result of the source language program
after it has been translated into machine language.

OCTAL:

Whole numbers in positional notation using 8 as a
base. The decimal or base 10 number, 125, be-
comes 175 in octal or base 8. Here is a convenient
way to convert a decimal number into an octal
number:

7 Divide the decimal number by 8.

5 The answer is 15 and 5 left over.
Divide the answer, 15, by 8 again.
The answer is 1 and 7 left over.
The octal number is 175.

_ 1

8 1

8 12

[620]6)]

To prove your answer is correct, do the following:

bx1= 5 Arrange the octal number verti-
7x8 = 56 cally with the least significant
1x64 = _64 digit on top. The least significant
125 digit represents one’s, so multi-
ply 5x1 = 5. The next digit in
the octal number represents 8's,
so multiply 7x8 = 56. The third
digit of the octal number repre-
sents 64's so multiply 1x64 =64.
The sum is the decimal number
125.

OPERAND:

A quantity on which a mathematical operation is
performed. One of the instruction fields in an ad-
lressing statement. Usually the statement consists
of an operator and an operand. The operator may
indicate an ‘‘add’’ instruction; the operand will
indicate what is to be added.

OVERFLOW:

Overflow results when an arithmetic operation
generates a quantity beyond the capacity of the

ranictar Alen vrafarrad +A ac arithmatical Auar.
1oyiowCr, M0 Feieiiced (U ao aniunnicutar Uvosr

flow. An overflow status bit in the condition code
register can be checked to determine if the pre-
vious operation caused an overflow.

OPERATING CODE (OPCODE):

Source statements which generate machine codes
after assembly are referred to as operating codes.

PARALLEL OPERATION:

Processing all the digits of a word or byte simul-
taneously by transmitting each digit on a separate
channel or bus line.

PARTY-LINE:

Party-line as used in its telephone sense to indicate
a large number of devices connected to a single line
originating in the CPU.

PC! (PARALLEL COMMUNICATIONS INTER-
FACE):

A Motorola device which interfaces the micropro-
cessor’s bus-organized system with incoming serial
synchronous communication information. The
parallel data of the multi-bus system is serially
transmitted by the asynchronous data terminal.
The PCI interfaces directly with low-speed Modems
to enable microprocessor communications over
telephone lines.

PIPELINE:
Computers which execute serial programs only

are referred to as pipeline computers.
PLA (PROGRAMMED LOGIC ARRAYS):

The PLA is an orderly arrangement of logical AND
logical OR functions. Its application is very much
like a glorified ROM. It is primarily a combina-
tional logic device.

POLLING:
Polling is the method used to identify the source

- of interrupt requests. When several interrupts occur

at one time, the control program decides which
one to service first.
PORT:

Device terminals which provide electrical access
to a system or circuit. The point at which the 1/0
is in contact with the outside world.

PROGRAM:

A procedure for solving a problem and frequently
referred to as Software.

PROGRAM COUNTER:

One of the registers in the CPU which holds ad-
dresses necessary to step the machine through the
program. During interrupts, the program counter
saves the address of the instruction. Branching also
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requires loading of the return address in the pro-
gram counter.

PUSH DOWN STACK:

A register that receives information from the Pro-
gram Counter and stores the address locations of
the instructions which have been pushed down
during an interrupt. This stack can be used for
subroutining. Its size determines the level of sub-
routine nesting (one less than its size or 15 levels
of subroutine nesting in a 16 word register. When
instructions are returned they are popped back on
a last-in-first-out (LIFO) basis.

R

RALU (REGISTER, ARITHMETIC, AND LOGIC
UNIT):

Unlike the discrete ALU package which functions
as an Arithmetic and Logic unit only, the ALU in
the microprocessor is equipped with a number of
registers.

RAM (RANDOM ACCESS MEMORY):

Random in the sense of providing access to any
storage location point in the memory immediately
by means of vertical and horizontal co-ordinates.
Information may be ‘‘written’’ in or “‘read’’ out in
the same rapid way.

RANDOM LOGIC DESIGN:

Designing a system using discrete logic circuits.
Numerous gates are required to implement the
logic equations until the problem is solved. Even
then, the design is not completed until all redun-
dant gates are weeded out. Random logic design
is no guarantee of optimum gate count.

REAL TIME OPERATION:

Data processing technique used to allow the
machine to utilize information as it becomes
available, as opposed to batch processing at a time
unrelated to the time the information was generated.

REGISTER:

A register is a memory on a smaller scale. The
words stored therein may involve arithmetical,
logical, or transferral operation. Storage in registers
may be temporary, but even more important is
their accessibility by the CPU. The number of
registers in a microprocessor is considered one of
the most important features of its architecture.
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RELATIVE ADDRESSING:

The relative addressing mode specifies a memory
location in the CPU’s Program Location Counter
register. This addressing mode is used for Branch
instructions in which case an opcode is added to
the Relative Address to complete the branching
instruction.

ROM (READ ONLY MEMORY):

In its virgin state the ROM consists of a mosaic of
undifferentiated cells. One type of ROM is pro-
grammed by mask pattern as part of the last
manufacturing stage. Another more popular type,
better known as P/ROM, is programmable in the
field with the aid of programmer equipment.
Program data stored in ROMs are often called
firmware because they cannot be altered. However,
another type of P/ROM is now on the market
called EPROM which is erasible by ultra viole
irradiation and electrically reprogrammable.

SCRATCHPAD:

This term is applied to information which the Pro-
cessing unit stores or holds temporarily. It is a
memory containing subtotals for various unknowns
which are needed for final results.

SEQUENTIAL LOGIC:

A circuit arrangement in which the output state is
determined by the previous state of the input. (See

also Combination Logic.) ﬁ

SOFTWARE:

What sheet music is to the piano, software is to the
computer. Looked at from a practical point of
view, one might say that software is the computer’s
instruction manual. The name, software, was ob-
viously chosen to contrast with the formidable

- hardware which confronted the first programmers.

Software is the language used by a programmer to
communicate with the computer. Since the only
language spoken by a computer is mathematical,
the programmer must convert his verbal instruc-
tions into numbers. In the case of microprocessors,
which vary from maker to maker, software libraries
are assembled by the manufacturer for the benefit
of the user.



SOURCE STATEMENT:

A program written in other than machine language,
usually in three letter mnemonic symbols, that
suggest the definition of the instruction. There are
two kinds of source statements: ‘‘executive in-
structions’’ which translate into operating machine
code (opcode); and ‘‘assembly directives’” which
are useful in documenting the source program, but
generate no code.

SIMULATOR:

A special program that simulates the logical
operation of the microprocessor. It is designed to
execute object programs generated by a cross-
assembler on a machine other than the one being
worked on and is useful for checking and debug-
ging programs prior to committing them to ROM
firmware.

STACK:

The stack is a block of successive memory loca-
tions which is accessible from one end on a last-in-
first-out basis (LIFO). The stack is coordinated
with the stack pointer which keeps track of storage
and retrieval of each type of information in the
stack. A stack may be any block of successive in-
formation locations in the read/write memory.

SLICE:

A type of chip architecture which permits the
cascading or stacking of devices to increase word
bit size.

STACK POINTER:

The stack pointer is coordinated with the storing
~nd retrieval of information in the stack. The stack
“pointer is decremented by one immediately fol-
lowing the storage in the stack of each byte of
information. Conversely, the stackpointer is in-
cremented by one immediately before retrieving
each byte of information from the stack. The stack
pointer may be manipulated for transferring its
contents to the Index register or vice versa.

STATUS WORD REGISTER:

A group of binary numbers which informs the user
of the present condition of the microprocessor.
In the Fairchild F8, the Status Register provides
the following five pieces of information: plus or
minus sign of the value in Accumulator, overflow
indication, carry bit, all zero's in accumulator, and
interrupt bit status.

STORAGE:

The word starage is used interchangeably with
memory. In fact, it has been recommended as the
preferred term by people who would rather not
imply that the computer has any relationship with
the human brain.

SUBROUTINE:

Part of the master routine which may be used at
will in a variety of master routines. The object of
a Branch or Jump Command.

THROUGHPUT:

The speed with which problems or segments of
problems are performed is called Throughput.
Divined in this way, it is obvious that throughput
will vary from application to application. As an
index of speed, throughput is meaningful only in
terms of your own application.

TWO’S COMPLEMENT NUMBERS:

The ALU performs standard binary addition using
the 2’s complement numbering system to represent
both positive and negative numbers. The positive
numbers in 2’'s complement representation are
identical to the positive numbers in standard binary.

+127 in standard binary = 01111111 +127 in 2's
complement = 01111111, Note that the eighth or
most significant digit indicates the sign: 0 = plus,
1 = minus.

However, the negative 2’s complement is the
reverse of the negative standard binary plus 1.

-127 in standard binary = 11111111. To form the
2's complement of - 127:

First reverse all the digits except the sign:
= 10000000
1

10000001 = -127 in 2's complement.

U

UART (UNIVERSAL ASYNCHRONOUS RE-
CEIVER TRANSMITTER):

This device will interface a word parallel controller
or data terminal to a bit serial communication
network.
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VECTORED INTERRUPT:

This term is used to describe a microprocessor sys-
tem in which each interrupt, both internal and ex-
ternal, have their own uniquely recognizable ad-
dress. This enables the microprocessor to per-
form a set of specified operations which are pre-
programmed by the user to handle each interrupt
in a distinctively different manner.
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WORD:

A group of ““characters” treated as a unit and given
a single location in computer memory. Presumably
a byte is a group of bits in contrast to a word
which is a group of numeric and/or alphabetic
characters and symbols, but the two words are
used interchangeably more often than not.



APPENDIX A
Signetics 2650 Microprocessor Specifications

The following data summarize the hardware and
software characteristics of the Signetics 2650 Mi-
croprocessor. For a more detailed description of

manual.

the 2650 characteristics and operation, the reader
should refer to the Signetics 2650 Microprocessor

BLOCK DIAGRAM 2650 MICROPROCESSOR

1

&

(2) DATA IN signals must be valid for 50nS after the trailing edge of OPREQ.

@
v
SUBROUTINE RETURN z REGISTER PROGRAM N
ADDRESS STACK S STACK STaTUS
x RO WORD
2
} ALU
3
«
2 MULTIPLEXER
<:: — S
BUS
= A | v CONDITION CODE
3 lmsmucn N ADDRESS REGIST :ﬁ ANO
5 ON ADDRESS REGIS zal ﬂ BHANCM LOGIC
o
OPERAND ADDRESS REGISTER =
%
o
@
« N_‘:bmu 8US
@
2
©
=
ADDRESS ADDER INTERRUPT A H
ReEQuEsT V] wrearuer "REGIsTER
LOGIC
INTERRUPT ¢:
ACKNOWLEDGE
tuocx
Vo
10 LOGIC C::a DECODING AND CONTROL LOGIC TIMING LOGIC
CONTROL LINES A
m— NV
To
cLock
2650 OUTPUTS:
INTERNAL INTERNAL
OPREQ DELAY ~500nS
CONTROL|OUTPUTS AND
| _L ADDRESSES|VALID
aoro-aoR14 [ -==-
MEMORY/TG el e - ———
S e e ) R - —
S i, - - ——— - g
READ/WRITE
O T -4 | S
FROM ACCESSED MEMORY:
. pr—
OPACK ~600nS AT
2.4uS CYCLE
i Ty -
DATA IN ALLOWABLE MEMORY (2)
ACCESS TIME
2650 CYCLE TIME
=3 CLOCK PERIODS=2.44S MINIMUM
NOTES: (1) OPACK must go low at least 100 nS before the trailing edge of T2 in order not to slow down the 2650
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PIN CONFIGURATION

SENSE 1 U 40— FLAG
ADR12 6—{ 2 391—o vee
ADR11 ¢—{ 3 38 K— cLOCK
ADR10 &—] 4 37 k— PAUSE
ADR9 & 5 36 k— OPACK
ADR8 &— 6 35 K— RUN/WAIT
ADR7 & 7 34—y INTACK
ADR6 &< 8 33 K—> DBUSO
ADRS (—{ 9 32— pBUS1
ADR4 &—{10 2650 31K—> pBUS2
ADR3 &—{ 11 30 K—> pBUS3
ADR2 &—{ 12 29— pBUS4
ADR1&—{ 13 28K—) DBUS 5
ADRO ¢—] 14 27— DBUS6
ADREN —) 15 26 k—> DBUS7
RESET — 16 25 K— DBUSEN
TNTREQ —) 17 24— oPREQ
ADR14-D/C &—{ 18 23— RW
ADR13-E/NE &—] 19 22— wrp
M/10 é—] 20 21}—o GND

(Z) REGISTER ADDRESSING

(1) IMMEDIATE ADDRESSING

(R) RELATIVE ADDRESSING

(A) ABSOLUTE ADDRESSING
(NON-BRANCH INSTRUCTIONS)

(B) ABSOLUTE ADDRESSING
(BRANCH INSTRUCTIONS)

INDIRECT ADDRESSING

MISCELLANEOUS
(E) INSTRUCTIONS

INSTRUCTION FORMATS

OPERATION CODE av
SYMBOLS
R - REGISTER NUMBER
V- VALUE OR CONDITION
7 6 5 4 3 2 1 0 X - INDEX REGISTER NUMBER
OPERATION CODE R DATA MASK GR BINARY VALUE ! - INDIRECT BIT
A —L
] 76 5 4 3 2 1
RELATIVE DISPLACEMENT
OPERATION CODE AV ' 64" DISPLACEMENT- +63
n . L
R N A I ) 76 5 4 3 7z 1
“INDEX
OPERATION CODE RIX | CONTROL  HIGHER ORDER ADDR LOWER ORDER ADDRESS
L i L
W™ 22 2 20 8 18 17 % RO 7§ 5 & 3 2 1 0
HIGHER ORDER ADDRESS
-
OPERATION CODE AV ' PAGE LOWER ORDER ADDRESS
FE I T TR T R R R R T £ LR B R TR TR 76 5 4 3 7 10
HIGHER ORDER ADDRESS
1
r
UNUSED  PAGE LOWER ORDER ADDRESS
P s
15 14 3 12 n 0 9 8 7 6 5 4 3 2 1
OPERATION CODE
i *INDEX CONTROL
00 NON-INDEXED
01= INDEXED WITH AUTO-INCREMENT
10= INDEXED WITH AUTO-DECREMENT
11= INDEXED ONLY
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2650 MICROPROCESSOR INSTRUCTION SET

»

MNEMONIC OP CODE FORMAT DESCRIPTION OF OPERATION AFFECTS CYCLES
2 000 000 12 Load Register Zero CC (Note 1) 2
oD | 000 001 21 Load Immediate CC (Note 1) 2
L R | 000010 2R Load Relative CC (Note 1) 3
A 000011 3A Load Absolute CC (Note 1) 4
z 110 000 1Z Store Register Zero (r #0) CC (Note 1) 2
STR R 110010 2R Store Relative 3
A 110011 3A Store Absolute 4
V4 100 000 12 Add to Register Zero w wo Carry C, CC (Note 1), IDC, OVF 2
ADD | 100 001 21 Add Immediate w'wo Carry C. CC (Note 1), IDC, OVF 2
R 100 010 2R Add Relative w'wo Carry C, CC (Note 1), IDC, OVF 3
A 100011 3A Add Absolute w/wo Carry C, CC (Note 1), IDC, OVF 4
2 101 000 1z Subtract from Register Zero w wo Borrow C. CC (Note 1), IDC, OVF 2
SUB | 101 001 21 Subtract Immediate w/wo Borrow C, CC (Note 1), IDC, OVF 2
R 101 010 2R Subtract Relative w/wo Borrow C, CC (Note 1), IDC, OVF 3
A} 101011 3A Subtract Absolute w/wo Borrow C, CC (Note 1), IDC, OVF 4
DAR 100 101 1z Decimai Adjust Register CC (Note 2) 3
b4 010 000 1Z AND to Register Zero (r # 0) CC (Note 1) 2
AND | 010 001 21 AND Immediate CC (Note 1) 2
R 010010 2R AND Relative CC (Note 1) 3
A 010011 3A AND Absolute CC (Note 1) 4
4 011 000 12 Inclusive OR to Register Zero CC (Note 1) 2
10R | 011 001 21 Inclusive OR Immediate CC (Note 1) 2
R 011010 2R ‘Inclusive OR Relative CC (Note 1) 3
A | 011011 3A Inclusive OR Absolute CC {Note 1) 4
Z 001 000 12 Exclusive OR to Register Zero CC (Note 1) 2
EOR | 001 001 21 Exclusive OR Immediate CC (Note 1) 2
R 001 010 2R Exclusive OR Relative CC (Note 1) 3
A 001 011 3A Exclusive OR Absolute CC (Note 1) 4
V4 111 000 1Z Compare to Register Zero Arithmetic/Logicalyj CC (Note 3) 2
com | 111 001 21 Compare Immediate Arithmetic/Logical CC (Note 4) 2
R 111010 2R Compare Relative Arithmetic/Logical CC (Note 4) 3
A 111011 3A Compare Absolute Arithmetic/Logical CC (Note 4) 4
RRR 010 100 12 Rotate Register Right w/wo Carry C,CC, IDC,OVF 2
RRL 110 100 12 Rotate Register Left w/wo Carry C, CC, IDC, OVF 2
BCT {R 000 110 2R Branch On Condition True Relative - 3
A ] 000111 3B Branch On Condition True Absolute - 3
BCF {R 100 110 2R Branch On Condition False Relative — 3
A 100 111 38 Branch On Condition False Absolute - 3
BRN R 010110 2R Branch On Register Non-Zero Relative - 3
A 010 111 3B Branch On Register Non-Zero Absolute — 3
BIR {R 110110 2R Branch On Incrementing Register Relative - 3
A 110111 3B Branch On Incrementing Register Absolute - 3
BDR R 111110 2R Branch On Decrementing Register Relative - 3
A 1M1 38 Branch On Decrementing Register Absolute - 3
ZBRR 100110 11 2ER Zero Branch Relative, Unconditional - 3
BXA 100 111 11 3EB Branch Indexed Absolute, Unconditional — 3

(Note 5)
*FORMAT CODE: Ther ber indi the ber of bytes. The letter(s) indicate the format type(s). See other side

NOTES
Condition code (CC1, CCO): 01 if positive, 00 if zero, 10 if negative
Condition code is set to a meaningiess value.

OB LWN =

Condition code (CC1, CCO): 01f RO > r, 00 if RO

Condition code (CC1, CCO): 01 1fr > V, 00 if r
Index register must be register 3. or 3’
Condition code (CC1, CCO): 00 if all selected bits are 1s, 10 1f not all the selected bits are 1s

PROGRAM STATUS WORD
PSL

r, 10 fRO<r

V,10ifr <V

PSuU
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Not | Not
S F " Used | Used SP2 | SP1 | SPO CC1| CCO [ IDC | RS WC | OVF|COM Cc
S Sense SP2  Stack Pointer Two CC1 Condition Code One WC  With/Without Carry
FoFlag SP1  Stack Pointer One CCO Condition Code Zero OVF Overflow
W ntecrupt Inhitnt SPO Stack Pointer Zero 1IDC  Interdigit Carry COM Logicat/Anth. Compare

RS Register Bank Select C Carry/Borrow

61



SUBROUTINE BRANCH/RETURN

MISC. INPUT/OUTPUT

PROGRAM STATUS
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2650 MICROPROCESSOR INSTRUCTION SET

*
MNEMONIC OP CODE FORMAT DESCRIPTION OF OPERATION AFFECTS CYCLES
R 001 110 2R Branch To Subroutine On Condition True, SP 3
BST Relative
A 001 111 3B Branch To Subroutine On Condition True, SP 3
Absolute
R 101 110 2R Branch To Subroutine On Condition False, SP 3
BSF Relative
A 101 111 38 Branch To Subroutine On Condition False, SpP 3
Absolute
R 011110 2R Branch To Subroutine On Non-Zero Register,| SP 3
8SN Relative
A 011 111 3B Branch To Subroutine On Non-Zero Register,| SP 3
Absolute
ZBSR 101 110 11 2ER Zero Branch To Subroutine Relative, SP 3
Unconditional
BSXA 101111 1 3EB Branch To Subroutine, Indexed, Absolute SP 3
Unconditional (note 5)
{C 000 101 12 Return From Subroutine, Conditional SP 3
RET E 001 101 12 Return From Subroutine and Enable SP, 1t 3
Interrupt, Conditional
WRTD 111100 12 Write Data - 2
REDD 011100 12 Read Data CC (Note 1) 2
WRTC 101 100 12 Write Control — 2
REDC 001 100 1Z Read Control CC (Note 1) 2
WRTE 110101 21 Write Extended — 3
REDE 010 101 21 Read Extended CC (Note 1) 3
HALT 010 000 00 1E Halt, Enter Wait State - 2
NOP 110 000 00 1E No Operation — 2
TMI 111101 21 Test Under Mask Immediate CC (Note 6) 3
LPS {U 100100 10 1E Load Program Status, Upper F, 11, SP 2
L 100 100 11 1E Load Program Status, Lower CC, IDC, RS, WC, OVF,COM, C 2
SPS (U 000 100 10 1E Store Program Status, Upper CC (Note 1) 2
L | 00010011 1E Store Program Status, Lower CC (Note 1) 2
CPS {U 011 101 00 2El Clear Program Status, Upper, Masked F, 11, SP 3
L 011 101 01 2E1 Ciear Program Status, Lower, Masked CC, IDC, RS, WC, OVF, COM, C 3
PPS {U 011101 10 2EI Preset Program Status, Upper, Masked F, 1l, SP 3
L 011101 1 2EI Preset Program Status, Lower, Masked CC, IDC, RS, WC, OVF,COM, C 3
TPS {U 101 101 00 2EI Test Program Status, Upper, Masked CC (Note 6) 3
L 101 101 01 2El Test Program Status, Lower, Masked CC (Note 6) 3

*FORMAT CODE: The number indicates the number of bytes. The letter(s) indicate the format type(s). See other sidg

NOTES: )
1. Condition code (CC1, CCO): Q1 if positive, 00 if zero, 10 if negative.
2. Condition code is set to a meaningiess value.
3. Condition code (CC1, CCO): 01 if RO>r,00if RO=r, 10if RO<r.
4. Condition code (CC1,CC0O): 01ifr>V,00ifr=V,10ifr< V.
5. Index register must be register 3. or 3’ )
6. Condition code (CC1, CCO): 00 if all selected bits are 1s, 10 if not all the selected bits are 1s.
PROGRAM STATUS WORD
PSU PSL
7 6 5 4 3 2 1 0 7 6 5 3 2 1 0
Not | Not
S F 1 Used | Used SP2 | SP1 | SPO CC1|CCO |IDC | RS | WC| OVF|ICOM | C
S Sense SP2 Stack Pointer Two CC1 Condition Code One WC  With/Without Carry
F Flag SP1  Stack Pointer One CCO Condition Code Zero OVF Overflow
I Interrupt Inhibit SPO Stack Pointer Zero IDC Interdigit Carry COM Logical/Arith. Compare
RS Register Bank Select C Carry/Borrow




APPENDIX B
Microcomputer Programming Techniques
with lllustrations

The successful design and implementation of micro-
computer-based systems is largely determined by
the extent to which the microcomputer program is
systematically organized. A well-structured pro-
gram has significant benefits in terms of modu-
larity and ease of testing/debugging/modification.
These features, in turn, lead to significant cost
savings during the system development cycle (out-
lined in Chapter |).

As a result of the research work done by a number
of people, certain useful programming methodolo-
“igs have evolved that lead to well-structured pro-
yrams. The objective of this section is to present
the technique called structured flowcharting toget-
her with other conventional programming methods.

DESIGN

FLOW CHART

|[CONVENTIONAL

¢

GENERATE

ASSEMBLY

LANGUAGE
CODE

#

GENERATE
MACHINE
LANGUAGE
CODE

SYSTEM DESIGNER

N

ASSEMBLER

Figure B.1 Conventional Programming Process

CONVENTIONAL STRUCTURED
FLOWCHART FLOWCHART
REPRESENTATION REPRESENTATION

SEQUENTIAL STRUCTURE

- |
i Li
Hiw

EXAMPLE: TERMINAL
UNENDING LOOP STRUCTURE pROGRAM DO FOREVER

___,* WHOAL PROGRAM.
A =B+ \DO FOREVER
C:=C+1 ] A=B+C

I N C:=C+1

Loop

2650 ASSEMBLY
LANGUAGE
REPRESENTATION

LODI,RO
STRA,RO
LODI,RO
STRA,RO

- h 0w

LODART
ADDA R1
STRA,R1
LODA,R1
ADDI,R1
STRA,R1
BCTA,UN

roO-=0>»00m

oop

Figure B.2 Iterative Loop Program Structures
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For illustrative purposes, the structured flow
charts for the ITS are included; these can be com-
pared to the assembly language listing for the ITS,
included in Appendix C. The presentation is
mainly for the more advanced reader and is meant
to be informative rather than tutorial.

There are several methods of generating a micro-
computer program to implement a functional
specification stated in plain English. The conven-
tional way of programming is illustrated in Figure
B.1. The process begins by drawing a conventional
flow chart depicting a sequence of steps, based on
a rather loose set of rules; the end product is a ma-
chine language (i.e., binary) program. The main
disadvantages of this technique are that the con-
ventional flow chart is (1) not easy to visualize,
and (2) difficult to debug. To alleviate these dif-
ficulties, a technique called structured flowcharting
was developed. The essential features of this tech-
nique are that it starts with a set of program blocks
that are essentially the same as the functional
specification and, then, the programmer works
down to the detailed block diagrams in a systematic,
well-defined fashion. Thus, the overall program

structure is easy to visualize, at all times. To aid in
the understanding of basic structured flowcharting
blocks, the conventional and structured flow charts
are shown together with the corresponding assem-
bly language code. Figure B.2 shows the basic build-
ing blocks for iteration loops of three types: (a) for-
ever, (b) fixed number of times, and (c) based on a
decision.

Figure B.3 presents the possible conditional logic
flow charts, Figure B.4 shows the flow charts as-
sociated with usage of subroutines and Figure B.5
presents those for communication in the input and

output to external devices.

The objective of the programmer is to use only
these structured programming blocks to implement
the functional specification. By way of illustration,
the structured flow charts for the ITS discussed in
Section 3.2 are presented in Figures B.6 to B.1:.
The corresponding assembly language listing is pre-
sented in Appendix C. The interested reader is urged
to compare the structured flow charts in this sec-
tion with the corresponding subroutines in Ap-
pendix C.

CONVENTIONAL
FLOWCHART
REPRESENTATION

STRUCTURED
FLOWCHART
REPRESENTATION

CONDITIONALLY TERMINATED LOOP STRUCTURE

DOWHILEA>B

A=A+1
B:=C+5
N

FIXED ITERATION OR INDEXED LOOP STRUCTURE

DO INDEX :=XTO Y BY Z

A (INDEX) :=B
B:=8B+1

A (INDEX) :=8B
B:=B+1

(]

INDEX :=
INDEX +2Z

Y

2650 ASSEMBLY
LANGUAGE
REPRESENTATION

LOOP LODA,R2
COMA R2
BCFA,GT
LODA,R2
ADDI,R2
STRA,R2
LODA, R2
ADDI,R2
STRA,R2
BCTA,UN oopP

CONT ..... 4

-»0®

>=>go0>
2
S

—owao

LODA,R3
LOOP LODA,RO
STRA,RO
ADDI,RO
STRA,RO
ADDA,R3
COMA,R3
BCFAGT  LOOP

,R3

<N®=»®X

Figure B.2 lterative Loop Program Structures (Cont.)
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CONVENTIONAL
FLOWCHART
REPRESENTATION

STRUCTURED
FLOWCHART
REPRESENTATION

PARTIAL CONDITIONAL STRUCTURE

{

B

? __FALSE

'

FULL CONDITIONAL STRUCTURE

{ A

=B
TRUE~_’?_~FALSE
A= A:=
YES NO B+C A-C
A:=
A-C
. y
CASE STRUCTURE
=0 =3
- Y:= - I:=
K:=5 3+ X P:=Q K+3
=0~ DO CASE JJ
=2
JJ =3 DEFAULT
o Y:= = I:=
K:=56 34X P:=Q K+3 ‘

+0
+3
+6

+9

2650 ASSEMBLY
LANGUAGE
REPRESENTATION

LODALRO A
COMA,RO B
BCFALEQ CONT
LODA,RO K
STRA,R0O C

CONT ......

LODA,R1T A
COMAR1 B
BCFA,EQ ACT2
LODA,RT B
ADDA,R1 C
STRA,R1 A
BCTA,UN CONT

ACT2 LODAR1 A
SUBA,R1 C
STRA.RT A

CONT .....

LODAR3 4
ADDA,R3 JJ
ADDA,R3 JJ
BXA TABL

CASO LODILR1 5
STRA,R1 K
BCTA,UN CONT

CAS1 LODI,R1 3
ADDA,R1 X
STRAR1 Y
BCTA,UN CONT

CAS2 LODAR1 Q
STRA,R1 P
BCTA,UN CONT

CAS3 LODAR1 K
ADDI,R1 3
STRA,R1 |

BCTA,UN _CONT

Pr——————————————r———————————

TABL BCTA,UN CASO
BCTA,UN CAS1
BCTA,UN CAS2

BCTAUN CAS3

CASE
TABLE

Figure B.3 Conditional Logic Program Structures
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CONVENTIONAL
FLOWCHART
REPRESENTATION

STRUCTURED
FLOWCHART
REPRESENTATION

SUBROUTINE CALL STRUCTURE

CALCULATE
B FROM X

SUBROUTINE STRUCTURE

SUBR

ENTRY
PARAMETER
IS X

A:=X-C

B:=B+A
RETURNS
B TO
CALLER

SUBR (X -»B)

SUBR (X »B)

A:=X-C

B:=B+A

RETURN B

2650 ASSEMBLY
LANGUAGE
REPRESENTATION

LODA, RO X
BSTA,UN  SUBR
STRA,RO B

SUBR SUBA,RO
STRA,RO
ADDA,RO
STRA,RO
RETC,UN

™®EP>O

Figure B.4 Subroutine Program Structures

CONVENTIONAL
FLOWCHART
REPRESENTATION

STRUCTURED
FLOWCHART
REPRESENTATION

INPUT FROM AN EXTERNAL DEVICE

'

READ A WORD
FROM DEVICE
DEV INTO X

'

X:=INPUT (DEV)

OUTPUT TO AN EXTERNAL DEVICE

'

WRITE X
TO DEVICE
DEV

OUTPUT (DEV) :=X

2650 ASSEMBLY
LANGUAGE
REPRESENTATION

REDE,RO DEV
STRA,R0 X

LODA,RO X
WRTE,RO DEV

Figure B.5 Input/Output Program Structures




The following pages document the structured flow

full duplex, parallel 1/0 version of the ITS discussed

charts for the general purpose, interrupt driven, in Section 3.4
MAIN
| _ _INITIALIZE THE‘|
LTYPEWRITER _
DO FOREVER
DO WHILE CHAR = NULL
NN y/// IN (—» CHAR)
CFCN = TRUE
TRUE ? FALSE
PMOD = TRUE
?
TRUE FALSE
SAVE (CHAR
—» ROOM)
ROOM = TRUE
?
TRUE FALSE
Y OUT (CHAR) +
FALSE = 0
TRUE = -1 CFCN = BOOLEAN FLAG WHICH INDICATES IF
NULL =10 CHAR REQUESTS A CONTROL FUNCTION
CHAR = CHARACTER OBTAINED FROM THE KEY- (INDICATED BY CC IN PROGRAM)
BOARD INPUT BUFFER (CARRIED IN R1 IN ROOM = BOOLEAN FLAG WHICH INDICATES IF
PROGRAM) THERE IS ROOM FOR CHAR IN THE TYPE-
PMOD = BOOLEAN FLAG WHICH INDICATES IF THE WRITER. TEXT BUFFER (INDICATED BY
TYPEWRITER IS IN PRINT MODE CC IN PROGRAM)

Figure B.6 TSB3 Program

INIT

INHIBIT INTERRUPTS (Il := 1)

SELECT BANK 0 REGS (RS :=0)

SELECT ARITH/ROTATE W/O CARRY (WC :=0)

SELECT LOGICAL COMPARE (COM := 1)

N

.. *DO INDEX := VEND - VSTR -1 TO 0 BY -1

| _ _| ZERO VARIABLE |

VSTR (INDEX) := 0
| STORAGE AREA

© T INITIALIZE -
INITIALIZE
) i B |
——————— -1
INITIALIZE
- |
IToT "~ oUTPUT DEVICES;
ENABLE INTERRUPTS (Il := 0)
RETURN
VSTR = ADDRESS OF THE 1ST BYTE OF VARIABLE STORAGE
VEND = ADDRESS OF THE LAST BYTE OF VARIABLE STORAGE +1

*THE FOLLOWING DATA ARE SET BY THIS LOOP:
KBUF =0 — KEYBOARD PROCESSING MODULE DATA
POPT =0,PIPT =0
PBUF (0) TO PBUF (PEND -1) = 0 ; PRINTER PROCESSING MODULE DATA
PTFG = FALSE
SOPT=0,SIPT=0
SBUF (0) TO SBUF (SEND -1) =0
PMOD = FALSE

SAVE BUFFER MODULE DATA
— GLOBAL DATA

Figure B.7 Initialize Typewrite Module
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IN (— CHAR)

KYIN

RETURN CHAR

ITIN

ITKY

RETURN

Figure B.8 Input Control Module

ITKY

OUTPUT (TTCN) = CONTROL WORD (TO CONFIGURE
UART FOR 110 BAUD, ODD PARITY, 8 BIT CHARS,
2 STOP BITS, AND KBD, PRINTER, AND ERROR
INTERRUPTS ENABLED)

SET UP INTERRUPT EXIT IN RAM

RETURN

KYIN (- CHAR)

CHAR := KBUF

CHAR := CHAR AND PARB

KBUF := NULL

RETURN CHAR

KINT

SAVE PROCESSOR STATUS

KBUF := INPUT (TTDA)

RESTORE PROCESSOR STATUS

RETURN AND ENABLE INTERRUPTS

KBUF = 1 BYTE BUFFER CONTAINING THE MOST
RECENT CHARACTER INPUT FROM THE
KEYBOARD

TTDA = DEVICE ADDRESS FOR KEYBOARD

TTCN = DEVICE ADDRESS FOR UART

PARB = LOGIC MASK TO STRIP PARITY BIT OFF
KBD CHARACTER

GET CHARACTER
FROM KBUF
STRIP OFF
PARITY BIT

PUT NULL

IN KBUF

Figure B.9 Keyboard Processing Module

KERR
SAVE PROCESSOR STATUS
STAT := INPUT (TTDA)
STAT := INPUT (TTCN) LOOK AT
- OVERRUN AND
STAT := STAT AND OVER AND PAR DARITY ERROR
STAT=0 BITS
TRUE ? FALSE
STAT = OVER
TRUE ? FALSE
MESS := ""?"
MESS := llo'l MESS := llP'l
(_ERRM (MESS) )
RESTORE PROCESSOR STATUS
RETURN AND ENABLE INTERRUPTS
STAT = KBD STATUS
OVER = LOGIC MASK TO EXTRACT OVERRUN ERROR BIT FROM STATUS
PAR = LOGIC MASK TO EXTRACT PARITY BIT FROM STATUS
MESS = FIRST LETTER OF ERROR MESSAGE, — ERR
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Figure B.10 Keyboard Processing Module (Cont.)




ERRM (MESS)

OUT (CR)

OUT (LF)

OUT (MESS)
OUT (E))
OuT (R))
OuT (R))
OUT (CR) )
OUT (LF)

)

:

RETURN

CR = CARRIAGE RETURN
LF = LINE FEED

Figure B.11 Keyboard Processing Module (Cont.)

ITOT

ITPR

RETURN

OUT (CHAR)

POUT (CHAR)

RETURN

Figure B.12 Output Control Module

ITPR

SET UP PRINTER INTERRUPT EXIT IN RAM

POUT (CR)

POUT (LF)

RETURN

POUT (CHAR)

DO WHILE PBUF (POPT) # NULL

NN

!

POPT := POPT + 1

PBUF -1 (POPT) := CHAR

POPT = PEND — PBUF

I'4

POPT:=0 1
PTFG = TRUE
FALSE ? TRUE
PTFG = TRUE
SIMULATE
PRINTER PINT
INTERRUPT
RETURN
PBUF = STARTING ADDRESS OF PRINTER OUTPUT QUEUE (FIFO)
PEND = ENDING ADDRESS OF PRINTER OUTPUT QUEUE + 1
POPT = INDEX FOR FILLING OUTPUT QUEUE
PTFG = BOOLEAN FLAG WHICH INDICATES IF PRINTER IS ACTIVE

Figure B.13 Printer Processing Module
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PINT CNTL (CHAR — FCN)
SAVE PROCESSOR STATUS CHAR = DELE
PIPT := PIPT + 1 o~ FALSE
PBUF -1 (PIPT) = NULL
CHAR =CTLE
OUTPUT (TTDA): = PBUF -1 (PIPT) CHAR = CTLP
PBUF -1 (PIPT): = NULL (ETDR I FALSE
PTFG: = FALSE PIPT = PEND-PBUF CHAR;CTLC
TRUE ? FALSE ( PRNT ) {TRUE i FALSE
PIPT:=0 | ] FALSE c"‘%
RESTORE PROCESSOR STATUS
RETURN AND ENABLE INTERRUPTS ALse { EXECUTE
CFCN := TRUE A
PBUF = STARTING ADDRESS OF PRINTER OUTPUT QUEUE (FIFO) igggmpﬁ
PEND = ENDING ADDRESS OF PRINTER OUTPUT QUEUE + 1 RETURN CFCN
PIPT = INDEX FOR EMPTYING PRINTER OUTPUT QUEUE
TTDA = DEVICE ADDRESS OF PRINTER OTLE - ConThoL g ey
CTLP = CONTROL P KEY
CTLC = CONTROL C KEY
CTLR = CONTROL R KEY
Figure B.14 Printer Processing Module (Cont.) Figure B.15 Input Character Decode Module
SAVE (CHAR — ROOM)
SOPT = SEND - SBUF PRNT
TRUE ? FALSE e T o
SOPT: = SOPT +1 SBUF (SIPT) = NULL
T
OUT (BELL) SBUF —1 (SOPT) = CHAR RUE ? FALSE
PMOD := TRUE
ROOM := FALSE ROOM := TRUE
RETURN
DO INDEX:= SEND — SBUF -1 TO 0 BY -1 CONT
S - SIPT = SEND — SBUF
X ilr SBUF (INDEX) := 0 TRUE ? FALSE
SIPT:=0 SBUF (SIPT) = NULL
SOPT := 0 ‘ TRUE ? FALSE
PMOD := FALSE MOVR (SIPT-»
RETURN
RETURN
DCHR (— CHAR) MOVR (SIPT —» SIPT)
SOPT =0 ~ DO WHILE SIPT < (SEND - SBUF) AND
TRUE ? FALSE ~ SBUF (SIPT) # NULL
SIPT := SIPT + 1
SOPT := SOPT -1 SBUF -1 (SIPT)=CTLS
CHAR := BELL CHAR := SBUF (SOPT) | FALSE i TRUE
SBUF (SOPT) := NULL ) (ouT (SBUF -1 (SIPT)))I RETURN SIPT
PMOD: = FALSE
RETURN CHAR RETORN ST CTLS = CONTROL
SBUF = STARTING ADDRESS OF TYPEWRITER TEXT BUFFER +1 SKEY
SOPT = INDEX FOR STORING IN THE TEXT BUFFER
SIPT = INDEX FOR PRINTING THE TEXT BUFFER
BELL = CHARACTER TO RING ERROR BELL TO OPERATOR
ROOM = BOOLEAN FLAG WHICH INDICATES IF
THERE IS ROOM FOR CHAR IN SBUF
Figure B.16 Save Buffer Module Figure B.17 Save Buffer Module (Cont.)
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the following. The ITS program listing for the serial

I/0 version discussed in Section 3.4, together with a

hardware kit is available from Signetics Corporation.
1

LABL Bl B2 B3 B4 ERROR SOURCE

PIP ASSEMBLER VERSION 2 LEVEL 1 1TS83-2650 INTELLIGENT TYPEWRITER SYSTEM PAGE
ADDR

system, designated as ITSB3, is documented in
LINE

The ITS program listing for the general purpose in-
terrupt driven full-duplex parallel 1/O version of

Intelligent Typewriter Program Listing
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Electronic components and materials

for professional, industrial and consumer uses

Argentina: FAPESA |.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Eicoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 42 1261.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Zieglergasse 6, A-1072 WIEN, Tel. 93 26 22.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 523 00 00.
Brazil: IBRAPE S.A., Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 287-7144.
Canada: PHILIPS ELECTRONICS INDUSTRIES LTD., Electron Devices Div., 116 Vanderhoof Ave., TORONTO 17, Ontario, Tel. 425-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.
Colombia: SADAPE S.A., P.O. Box 9805 Calle 13, No. 51 + 39, BOGOTAD.E. 1., Tel. 600 600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV, Tel. (01) 69 16 22.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 172 71.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915 311.
Hong Kong: PHILIPS HONG KONG LTD., Components Dept., 11th Fi., Din Wai Ind. Bidg., 49 Hoi Yuen Rd, KWUNTONG, Tel. K-42 72 32.
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, ‘Timah’ Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44 163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.
Italy: PHILIPS S.P.A_, Sezione Elcoma, Piazza IV Novembre 3, 1-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., 32nd FI., World Trade Center Bidg., 5, 3-chome, Shiba Hamamatsu-cho, Minato-ku, TOKYO, Tel. 03-435-5268.
(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 79 33 33.
New Zealand: EDAC LTD., 70-72 Kingsford Smith Street, WELLINGTON, Tel. 873 159.
Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 15 05 90.
Peru: CADESA, Jr. llo, No. 216, Apartado 10132, LIMA, Tel. 27 73 17.
Philippines: ELDAC, Philips industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.
Singapore: PHILIPS SINGAPORE PTE LTD., Eicoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 53 88 11.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG, Tel. 24/6701-2.
Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.
Sweden: A.B. ELCOMA, Lidingovagen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 97 80.
Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZURICH, Tel. 01/44 22 11.
Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.
Turkey: TURK PHILIPS TICARET A.S., EMET Department, Giimiissuyu Cad. 78-80, Beyoglii, ISTANBUL, Tel. 45 32 50.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices & Materials) AMPEREX SALES CORP., 230, Duffy Avenue, HICKSVILLE, N.Y. 11802, Tel. (516) 931-6200.
(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 943 21.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.
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